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Abstract 

We propose an efficent parallel implementation of the Swendsen-Wang algorithm for a 3D 
Ising system. A modified relaxation method was used for the parallelization. The simulations 
were performed on the intel Paragon. We discuss the implementation in detail. 

1. Basics  

The Hamiltonian of  the spin-½ Ising model is 

7"[ = - - J ~ - ~ S i S  j -- H Z S i ,  S i ~ {'q-l). ( | )  
(i j) i 

J denotes the coupling constant, sj represents the spin at the position j .  ( i j l  means that 
the sum is taken over next neighbors only. The magnetic field is indicated by H. In this 
paper we describe simulations of  the 3D Ising Model without magetic field ( H  = 0).  Up 
to now only the two dimensional Ising-Model is exactly solved. The standard approach 
for treating the three dimensional Ising-Model is the simulation. Especially the critical 
exponents are of  interest. Possible algorithms like single spin flip algorithm [6] or Wolf 
algorithm [ 5] for large system habe already been implemented. In this paper we present 
the first parallelisation of  a 3D-Swendsen-Wang algorithm we know of. 

The single spin flip algorithm chooses a spin si satisfying detailed balance and flips 
this spin with a temperature dependent probability, e.g. with P = exp(2Js i  ~ j  s j k T ) .  

One drawback is the critical slowing down, especially at the critical temperature, so that 
many configurations have to be discarded, due to high correlations. 
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In the single spin flip algorithm the individual spins are of  interest; in the cluster 
algorithm bonds between neighbouring spins are of  interest. Fortuin and Kasteleyn [ 1 ] 

showed that it is possible to rewrite the traditional partition function of the Ising model 
in single spin representation to get a partition function in cluster representation. Of  the 
two possible dynamics, we use the Swendsen-Wang cluster algorithm [3].  Adjacent 
parallel spins are linked with probability P = 1 - e x p ( - J / k T ) ,  then they are flipped 
together with probability of  0.5. Via this long range dynamics, the algorithm avoids 
critcal slowing, thereby saving CPU-time. 

Recently Tamayo [2] and Hackl [7] implemented two dimensional Swendsen-Wang 

algorithms efficiently on parallel computers. Adapting this program for three dimensions, 
several problems occured. The part of  the program handling the communication had to 
be rewritten from scratch. In this paper, we present the two major parts of  the program, 
the local label generation and the communication models. 

2. Local label generation 

2.1. Hoshen-Kopelman-Algorithm 

The method of  local label generation is based on the work of Hacki [7].  The Hoshen- 
Kopelman-Algorithm [4] was implemented for a 3D spin system. The local code was 
only a 3D-modification of  the 2D-code in [7].  The only difference is that the number 
of  neighboring elements increases from four to six. 

Hoshen and Kopelman developed a multi-label algorithm in which it is possible to 
refer to a cluster with more than one label. In an additional one-dimensional array, the 
so-called owner list, it is noted that cluster I owns cluster k. That means that the label l 
is found in the k-th owner list entry. Such an entry is by our definition never negative, 
since the labels are never negative. But label ! can also refer to another cluster. A cluster 
that refers to no other cluster and, therefore, belongs to itself, is called a root cluster. 

After the local cluster process has come to an end, it is necessary to decide which 
cluster should be flipped. Bit 30 is used as a flag in the owner list, since bit 31 represents 
the minus sign (bits are numbered from 0 to 31). This flag 30 is cleared in all root 
clusters with a probability of  50%, since entries of  the root clusters are negative. This 
information is transferred to all dominated clusters. This makes is possible to quickly 
determine whether an individual spin should be flipped, since every spin must only be 
checked in one owner list entry and not checked iteratively. 

With this information it is easy to decide whether a certain spin should be flipped. 
First, the corresponding cluster label must be extracted from the label array. Second, the 
flipbit in the corresponding entry of  the owner list must be checked. 
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2.2. Program realization 

Fig. 1. System with four clusters. 

The 9 Byte Algorithm developed by Hackl in [7] ,  page 22, is used. In this algorithm, 

9 bytes o f  memory per site are needed. These 9 bytes are: 

- 1 byte ( c h a r )  represents the spin ( ' 1 '  or ' - 1 ' ) .  It is not useful to store the spins in 

bit-coded form, beause the memory saved is insignificant compared to the effort to 
compute the spin-coding. 

- 4 bytes ( l o n g )  represent the cluster labels for every element. 

- 4 bytes ( l o n g )  for the owner list, if the worst case scenario is assumed, so that 
every spin is its own cluster, i Owner list entries that are greater than or equal to the 

lowest local label indicate that the corresponding cluster belongs to the cluster with 

this label. This condition can be used to refer to the cluster sizes of  the root clusters 
with negative numbers ( ( - 1 ) • cluster size). 

- The first two data fields are as 3-dimensional arrays, whereas the owner list imple- 
mented is a one-dimensional array. 

- The use o f  a sentinel (0-spins to mark the boundaries) was avoided to save storage. 

- The program was implemented in C. Code written in C on the Intel Paragon that 
doesn' t  contain much floating-point operations is marginally faster than a comparable 
Fortran-program. 

- We use periodic boundary conditions. 

The sites are always processed in a pre-determined order. One starts with ( 0 , 0 , 0 )  

and goes layer by layer (z-axis)  through the system (for the definition of  the coordinate 
axis see Fig. 1 ). The layers are processed line by line (y-axis).  It is therefore better to 
define the array in the form 

] At T < oo, the necessary length of the list can be found empirically by running the program. As the 
largest runs of the code were not troubled by storage shortage, but by lack of CPU time, this is not absolutely 
nece~ary 
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v a r i a b l e n a m e  [ z ] [ y ] [ x ]. 

If  the size of  the local system is lx ,  ly,  l z ,  then an array in the form of c h a r  s p i n  

[ l z ]  [ l y ]  [ Ix ]  is used. No sentinel is used: As the number of  dimensions increases, 

e.g. zero-spins at the boundaries would take an inordinate amount of  memory compared 

to the other spins. 
The choice of  a label is made according to whether a bond exists to a neighboring 

element. A bond exists when the neighboring spins are parallel and p < I - e -2J/kr, p 

is created by the random number generator. In general, there are 4 possiblities. 
- no bond 

- bond in one direction 

- bond in two directions 

- bond in three directions 

If  no bond exists, a new cluster is created. The label counter is then raised by 1. The 

new cluster refers to this number. The corresponding owner list entry is set to - l, since 

every new cluster belongs to itself and contains one spin. 

If  a bond exists in one direction, then the cluster label of  the neighboring element is 
taken. The cluster labels are always the root labels. The entry in the owner list for this 

cluster is also lowered by l, since the cluster has grown in size by one spin. 

If  bonds exist in 2 directions, it is necessary to test whether the bonds indicate two 

different clusters (root clusters). If  both cluster labels are the same, then the processing 
is identical to the situation in which only one bond exists. The second bond brings no 

additional information. The dominant cluster label is chosen. The owner list entry of  

the dominated cluster is added to the owner list entry of  the dominant cluster. The the 

owner list entry of  the dominant cluster is lowered by 1, the entry in the owner list of  

the dominated cluster indicates the new root cluster. 

The same is true for bonds in three directions. Instead of  one dominated cluster, two 

dominated clusters exist. The process is otherwise anologous to the previous situation 
in which bonds in two directions exist. 

The label that was generated after this fashion is stored in the label array. 
The boundary spins do not check all directions. Since no zero-spins exist in the array 

as sentinels, it is necessary that the program is able recognize the boundaries via the 
loop indizes. So superfluous i f  tests can be avoided. 

After the local cluster process has come to an end, it is necessary to decide which 
cluster should be flipped. Bit 30 is used as a flag in the owner list, since bit 31 represents 
the minus sign. To realize the cluster flips, flag 30 is cleared in all root clusters with 
a probability of  50%, since entries of  the root clusters are negative. This information 

is transferred to all dominated clusters. This makes is possible to quickly determine 
whether an individual spin should be flipped, since every spin must only be checked in 
one owner list entry and not checked iteratively. 

With this information it is easy to decide whether a certain spin should be flipped. 
First, the corresponding cluster label must be extracted from the label array. Second, the 
flipbit in the corresponding entry of  the owner list must be checked. 
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Fig. 2. Layer distribution of the nodes. 

3. Communicat ion  models 

Our parallelisation is realized by geometric parallelisation, the spin arrays are dis- 
tributed among the nodes. This would be a geometric parallelisation. One problem that 
arose in programming the parallel subroutines was that the growing number of dimen- 
sions caused the number of boundary spins to grow disproportionately to the number of 
nodes. It became apparent that it was only sensible to use host models with 16 nodes, 
since a number of nodes greater than 16 results in the host arrays becoming larger that 
the local arrays. With more than 16 nodes, the speed of the program slowed dramatically. 
For the sake of completeness, this model is presented in spite of this problem. 

3.1. Host models 

The host model (Fig. 3) is basically a globalisation of the Hoshen-Kopelman- 
Algorithm (see section2.1). Global data are sent to an individual node, the host node, 
and processed there. This node uses a host owner list. The simplest example of this 
model is the strip model (Fig. 2). 

The diagramms are presented in two dimensional form for the sake of simplicity. The 
flip bit is ignored in the owner list. 

3.1. I. Strip model 

For this model, the spin array is divided into layers (see Fig. 2); the individual layers 
are assigned to different nodes. Every node processes only one part of the system. 

Every node is also responsible for the processing of the boundary spins in x and 
y directions. Each node also shares two boundary areas with the neighboring nodes. 
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Fig. 3. Transfer of the boundary spins to the host. 

Node 0 also acts as the host. Node 0 must connect the clusters that extend beyond the 
local boundaries. For this purpose, the following information is needed: 

(i) where bonds exist beyond the boundaries of the nodes, 

(ii) to which clusters these spins belong. 

One simple way to do this would be to send all boundary spins to the host, which would 

store them in an array of the size Ix × ly  × 2 • (number of nodes), since 2 × Ix x ly  is 

the size of the boundary area. The presence of bonds would not yet be known. The host 
could proceed as in the local section of the program; for all host spins, the probability 

of a bond would be calculated. That would take too much time and would force the 

other nodes to wait. 

It is better to mark the boundary spins before sending them to the host. Every node 

then evaluates its upper boundary spins for the existence of bonds. If no bonds exist, 

then the corresponding spin is multiplied by two before it is sent. The host must then 

test for equality, since the boundary spins take the values -2 ,  -1 ,  I and 2, across the 
node boundaries(see Fig. 3). 

The handling of cluster label is more difficult. If the local labels were taken, then 

there would be several clusters with the same label. This would make the determination 
of the dominating cluster impossible. 

The simplest method is to choose different labels from the start. Assuming that there 

were k spins at each node, then the cluster labels at node 0 would be 1 . . .  k, and at 
node 1 k + 1 . . .  2k, etc. The problem would be that the label array and the owner list 
would be connected to each other. The complete owner list would have to be transferred 
to the host, whereby the memory limits on node 0 would soon be reached. 

The better method is to create individual boundary labels. If I is the number of spins 
on a boundary area, then all local clusters start at 2l + 1. The first 21 numbers are left 
free for the boundary labels. The local root clusters on the boundary area are transferred 
to these boundary clusters. Only the first 2l elements of the owner list must be sent to 
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Fig. 4. Preparation of the boundary labels. 
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Fig. 5. Preparation of the local owner list. 

the host (see Fig. 4). 
Additionally, the owner list must be broadened (see Fig. 5), whereby the old local 

clusters indicate the new boundary clusters. In the area of the boundary labels, the owner 

list contains only root clusters. 
The boundary labels (see Fig. 6) and the corresponding section of the owner list 

(see Fig. 7) are now sent to the host and given a 21. (node number) offset, since 

21. (node number) is the size of the total boundary area. Through this process, the 

labels are made unambiguous. 
The clusters must be connected to each other at the host using the same rules that 

are used for the local routines. Finally, the current owner lists must be sent back to the 
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Fig. 6. Transfer of the boundary labels to the host. 
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Fig. 7. Transfer of the owner list to the host. 
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individual nodes, where the flip bits are also transferred. 

In keeping with this method, the host must reserve memory space for Ix x ly  x 2 .  

number of  nodes) spins. The host must also reserve memory for the same number of  

labels and owners. All  other nodes do not make use of  this reserved memory space,since 

the same code is used on all nodes. 

The memory space for the host labels can be saved by transferring the information 

to the owner list. This method corresponds to Hackl's 5 byte algorithm [7] ,  page 24. 

This reduces the amount of  memory needed by a little less than 50%. Every spin 

position is represented by an owner list entry. The upper boundary labels are transferred 

to the elements 1 . . . . .  l and the lower boundary labels are transferred to the elements 

l + 1 . . . . .  2l of  the owner list (see Fig. 8).  
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Fig. 8. Merging of the local boundary label army and the owner list. 

3.1.2. Cube  model  

In the cube model ,  the spin array is cut into cubes and distributed among the nodes 

(see Fig. 9) .  

The result  is a model  with six instead of  two boundary  areas. It can be shown that 

beyond  8 nodes, the number  of  boundary  spins is smaller  than in the strip model.  

If  the spin array is cubic with boundary  length L and n is the number  of  the computer  

nodes, then the number  of  boundary  spins which must  be dealt with at the host is 

Strip: L 2 • 2 • n. (2 )  

For an even cubic  dis t r ibut ion (n  = x 3 with x C { 2 , 3 , 4  . . . .  }) ,  the number  of  boundary  

spins is 

Cube:  ~ . 2 . n . 3 = 6 . L  2 . n  I/3 (3)  
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Fig. 9. Cubic node distribution. 

It can be shown, that when 8 or more nodes are used, the number of  boundary spins 
in the cube model is smaller than the number needed in the strip model, independent 

from the system size L. Eight nodes represent the smallest truly three dimensional 

parallelization. Their distribution in the x : y : z directions is 2 : 2 : 2. 

For a ( z /2 )  cubic distribution (2n = x 3 with x E {2 ,3 ,4  . . . .  }), the number o f  

boundary spins is 

Cube (z /2 ) :  (2n~l/3 + 2-  (2n)l/3 (2,),/3 - 2 .  n = 5-  (2n) 1/3 L 2. (4) 
2 

Here it can be shown that beyond 32 nodes, the number of  boundary spins becomes 
smaller than in the strip model. A system with 32 nodes represents the smallest three 

dimensional cube (z/2)-distribution: 4 : 4 : 2. 
For a (x/2, y/2) cubic distribution (4n = x 3 with x E {1 ,2 ,3  . . . .  }), the number of  

boundary spins is 

Cube(x/2,y/2): - -  + 2 .  (4n)t/3 (4,~,/3 2 . n  4 (4n) V3 L 2. (5) 

In this case the minimal node number is 16, which represents a 2 : 2 : 4 distribution. 

3.2. Relaxation model 

Flanigan and Tamayo's  [2] relaxation model offers an alternative solution to this 
problem. In this model, no host is used. Communication is only carried on with the 

logical neighbor. These often differ greatly from physical neighbors which are connected 
through communication lines. (see Fig. 10). The cubic model is used to minimize the 

necessary communication. 
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Fig. 10. Map from logical to physical distribution. 
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Fig. I 1. Terminology of the three--dimensional directions. 

Since it is important in this communication that the relative position of the neighboring 
elements is clear, a special terminology of directions (see Fig. 11 ) is introduced. 

3.2.1. Basic principle 

The relaxation is divided in three steps: the preparation phase, the relaxation phase, 
and the evaluation phase. 

Preparation phase: In this phase, the system is prepared for the relaxation. Two tasks 
must be completed: 

(i) Every node must know where bonds exist to its neighbors. 
(ii) The local boundary label must be prepared. 

The bonds are merged into the boundary spins, analogously to Section 3.1.1. In each 
dimension, the bonds must be determined in just one direction, since the bonds from x 
to y must be the same as from y to x (see Fig. 12). 

These spins are then sent to the logical neighbor in all six direction (see Fig. 13). 
Every node then knows where its clusters have bonds to clusters of other nodes. These 
do not change during the relaxation phase. 
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Fig. 12. Preparation of the boundary spins for relaxation. 
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Fig. 13. Communication of the boundary spins with the neighbours (the third dimension is not shown). 
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Fig. 15. Simple scaling of the boundary spins. 
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Fig. 16. Scaling of the boundary spins with atruct. 

The boundary labels consist only of root cluster labels. Only the flip information is 
added. Since the number of boundary clusters is by definition positive, the flip bit can 
be represented by a minus sign (see Fig. 14). The smallest possible local label is !, 
since - 0  does not exist as an integer. 

As in the host model, the boundary labels must now be made unambiguous. The 
simplest method to achieve this goal is to add an offset of the number of the local 
spins to the absolute value of the boundary label. The sign must then be restored (see 
Fig. 15). 

This method works up to an boundary length of the entire system of 1024 spins. 
For larger systems, the boundary label must be expanded. The most appropriate way to 
do this is to mark the boundary label so that its home node is apparent. To minimize 
the communication needed, both data are summarized in a s t r u c t  new={long l a b e l ;  
s h o r t  node;  } command (see Fig. 16). 

Since no global owner list exists in this model, it is not possible to determine the size 
of the clusters spanning over more than one node. 
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Relaxation phase: The relaxation phase consists of at least one relaxation cycle. This 
cycle is repeated until nothing has changed in the system since the last cycle. This is 
necessary since the information in each node can only be passed in every cycle to one 
further node. 

The relaxation cycle consists of six relaxation units; each unit represents one direction. 
The order of these units within a cycle can be arbitrarily chosen. It is only important 
that the order be consistent for all nodes. 

A relaxation unit always follows the same series of steps; this series of steps runs 

simultaneously on all nodes. A relaxation unit processes only the boundary label. The 
local labels are not altered at this time. 

Suppose that the relaxation takes place on the ( x - )  boundary. The following steps 
would take place: 

(i) The local ( x + )  boundary label would be sent to the neigboring node, which lies 
opposite to the ( x + )  boundary. 

(ii) The boundary label would be received from the neigboring node, which lies op- 
posite to the ( x - )  boundary. 

(iii) The spin array of the ( x - )  boundary is processed element by element. 
(a) The spin is tested for the existence of a bond (spin equality) with its neighbor. 
(b) If a bond exists, then the label received from the neighbor is tested for 

dominance. The element with the smallest absolute value, since the minus 

sign indicates the flip bit, dominates. 
(c) If the label of the neighbor is dominant, then the dominated label is replaced 

by the dominant label throughout the entire node. Not only the labels on the 
( x - )  boundary can be changed, but also all labels on all other boundaries? 

Example: For the sake of simplicity, the process of finding the root labels over 
several processors for a two dimensional array is explained in one dimension. 

First, all nodes send their boundary labels in one direction. In this diagram, all 
boundary labels are sent upwards. It is important to note that node three is above node 

0 (see Fig. 17). 
All nodes now assume the dominant label. This occurs in Fig. 18 in node 3. All 

boundary labels of 31 and 32 are replaced with the label 2. 
The updated boundary labels are now sent downwards and processed in the same way 

(see Fig. 19). 
At the end of this unit, clusters 1 and 3 have migrated from node 0 to node 1 and 

cluster 11 has migrated from node 1 to node 2. 
This ends the first relaxation cycle. After three further cycles (see Figs. 20-22),  the 

information has been distributed to the entire system. In order to simplify the diagram, 
the boundary labels replace the local labels. 

After the second relaxation cycle has ended (see Fig. 20), the entire picture is 
dominated by clusters with a home node of 0. 
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Fig. 17. The first relaxation cycle: sending the labels upward. 

Fig. 18. The first relaxation cycle: processing of the labels. 

The cluster has now distributed itself over the entire system. Inspite of this, another 

relaxation cycle must be started, since the system does not yet know that the relaxation 

phase is finished. It is only clear at the end of this cycle that no new changes have 

occurred. 
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Fig. 19. First relaxation cycle: direction of relaxation is downward. 

situation at beginning of cycle after upward relaxation 

) 
after downward relaxation 

Fig. 20. Second relaxation cycle. 
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after downward relaxation after upward relaxation 

Fig. 21. Third relaxation cycle. 

after upward relaxation 

/ .  

• ,alter downward relaxation 

Fig. 22. Fourth relaxation cycle. 
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local label array local owr~r  lisl (I') fit!0 bit ~el 

1 2 3 4 5 6 7 8 9 10 I1 12 

,3 , .  ,. ,. ,7 ,8 ,~ 20 2, .2 23 24 
I ~ 17~ -2 I - . 0 1 , ~ 0 1  ' I ' ~ 1  ' I 0 I 0 I 0 1 0 1  

boundary label array 

-1 -I 2 2 -I -I 

local owner list (13 flip btt set 

1 2 3 4 5 6 7 g 9 10 11 12 

13 14 15 16 17 18 19 20 21 22 23 24 

I ~  1 ' ~ 1 ~ 1 " 0 1 1 ~ 0 1  8 1 '  I ' l °  I ° 1  0 1 0 1  

Fig. 23. Evaluation of the boundary spins. 

Evaluation phase: At the end of the relaxation, the results must be translated into the 

local system. Since every boundary label is unambiguously assigned to a certain label, 

the flip information can be transferred to the local owner list. This information must 

then be transferred to the local subclusters (see Fig. 23). 

3.2.2. Optimization 
During the relaxation phase, it might be of interest to know: 

(i) whether too much information is transferred, 
(ii) whether too many boundary labels are updated. 

To answer these question, it is necessary to employ channel reduction and a net list. 

Channel reduction: It is unimportant for the relaxation algorithm whether the boundary 

labels consist of clusters with or without a bond to the next node. The boundary labels 
without a bond are only decoration, since the changes in these boundary labels have 
no effect on the neighboring labels. For this reason, boundary labels are only generated 
where a bond to a neighbour exists. The number of transferred boundary labels is 

reduced through this process. The transferred labels could be compared with information 
channels between the individual neighbours. The term channel reduction is used for this 
reason. For an boundary label it is not important what exactly its position is in the local 

system. Since the neighbor behaves in an identical way, both create the same number 
of boundary labels (see Fig. 24). For example, the labels of the third spin in the first 
row are no longer tested, but rather the labels of the first bond between the neighboring 
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Fig. 24. Channel reduction. 

I 

nodes. The evaluation for the existence of a bond is no longer necessary, since only 
bonds are transferred. 

The evaluation works inversely in an analogous process. The spin array is searched 
for bonds. Where bonds exist, the next boundary label is taken. 

In this way it is possible to reduce the number of transferred labels by at least 50% 
(at T = 0). As the temperature rises, at Tcrit w e  save 73% of the number of labels, since 
the probability to form bonds decreases. 

Net  list: The process of testing all boundary labels before changing a local boundary 
label is actually a brute force approach. It would be rare that so many boundary labels 
would be connected by a local cluster. The number of boundary labels would also be 
reduced through channel reduction. A Hoshen-Kopelman-Algorithm is not appropriate, 
since it would use up too much memory. A different approach is necessary. 

Every local boundary label is given two additional pieces of information: 
(i) the first boundary label that belongs to the same local cluster, 

(ii) the next boundary label that belongs to the same local cluster. 

If  the boundary label is changed, then it is only necessary to check in the net list [start] 
(see Fig. 25) to see what the first boundary label of this local cluster is. 

If  this cluster consists of one boundary label or if it is the first label of a row, then 
this label indicates itself. The new label is copied to this entry of the boundary label 
array. If further boundary labels of this cluster exist, they are successively changed. A 
zero in this list means that the last entry for this cluster has been reached. In order to 
be able to achieve this optimization, all boundary labels must be placed in a single one 
dimensional array, since only the bonds are numbered. 



296 M. Bauernfeind et al./Physica A 212 (1994) 277-298 

numbering of the edge hst 

I 2 3 

9 

10 

net list 

I 2 3 4 5 6 7 8 9 10 

Sl.a/'t 

ilex[ 

4. Benchmarking 

Fig. 25. The net list. 

We used the Intel Paragon at the Zentralinstiut for Mathematik at the KFA Ji.ilich with 

140 nodes of i860 Processors. The time used by the local part of the program can be 

described by 

ttoc= a ln  + a2n In(n). (6) 

n denotes the size of the system. The part aln  considers the label generation for every 

individual spin. The iterative search in the owner list is represented by a 2 n l n ( n ) .  The 

running time of the part of the communication part is more complex. Empirically we 

could fit the time to 

tcom = al + a2l + a 3 n l n ( n )  + a411n(l) + . . . .  (7) 

but there may still be some terms left out. l denotes the total boundary length and n 

the system size. al is something like a setup time. a2l expresses that the time needed 
increases with the amount of boundary labels which have to be send. a3n In(n) is forced 

by the owner list and aal In(l) indicates the net list. 
In table 1, we give the effciencies and update-times for various processor numbers 

and system sizes. The efficiency r/ was computed as ttocat/(tto~.~t + tglobal), ttoc~t and 
tgtobal were measured on node 0 via the mclock-function. 

The efficiencies of the 140-processor systems are also plotted in Fig. 26. 
The trouble with table 1 is, that though the efficiency increases, so does the necessary 

amount of time /spinflip. Several competing effects are at work: On the one hand, to 
realize periodic boundary conditions, the relative amount of CPU time increases (against 
all expectations, but consistent with the behaviour of our scalar code on a single node). 

On the other hand, the optimal System lengh is 2803, because the message length fits 
exactly into the communication buffers. The effects could not be properly investigated, 
because too few system sizes can be run: non-cubic local systems exhibit different 
runtime-behaviour in the local routines due to different boundary conditions. 
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Table 1 

Nproc L ,~ "rl in % ns/spinflip 

64 643 2.6 x 105 18 252 
128 963 8.8 x 105 20 115 
128 1283 2.1 x 106 78 89 
140 1403 2.7 x 106 20 109 
140 2803 2.2 x 107 26 88 
140 4203 7.4 x 107 87 109 
140 5603 1.8 x 108 92 125 

The system-sizes  which are marked with a * were measured at the critical temperature, the other measurements 
were made over a range o f  temperature symmetrically to the critical temperature. 

95 

90 

85 

80 

75 

70 

65 

60 

55 

50 

45 

40  

/ 
i 

/ 
/ 

! 

/ 
I 

/ 
/ 

I i I I i I I I 

2e+07 4e ,07 6e+07 80+07 le+08 1,2e+06 1 40+08 1 6e+08 1.8e+08 
system size 

Fig. 26. Efficiency versus system sizes on 140 nodes. The line is guideline for the eye only. 

Comparisons to 2D-codes are also very problematic, because the necessary amount 
for communication is much higher in 3D. Therefore, the communication routines had to 
be much better optimized to avoid the communication of redundant data (see channel 
reduction in Section 3). 

5. Conclusion 

We have shown that it is possible to successfully parallize a three dimensional 
Swendsen-Wang algorithm. When rising the number of dimensions a more and more 
sophisticated communication pattern will be needed. This is important because of the 
increasing amount of communication. 

The best single spin update time we achieved was 88ns on 140 nodes on an Intel 
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Paragon. The largest system we simulated had an edge length of 560. This size represents 

not the largest possible system, but the size we could process in a reasonable amount 

of time. 

The differences to the 2D-case were, that no efficient host-node model was possible 

even theoretically due to storage requirements, so the relaxation algorithm was the 

method of choice. Apart from channel reduction, no further tricks compared to the 

2D-algorithms had to be employed to obtain high efficiency. 
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