
H.~Fi\.'I~.:R Physica A 212 (1994) 277-298

3D Ising model with Swendsen-Wang dynamics:
a parallel approach

M. Bauernfeind, R. Hackl, H.-G. Matuttis, J. Singer, Th. Husslein,
I. Morgenstern

Institut far Physik II - Festk6rperphysik, Universita't Regensburg, 93040 Regensburg, Germany

Received 25 July 1994; revised 28 July 1994

Abstract

We propose an efficent parallel implementation of the Swendsen-Wang algorithm for a 3D
Ising system. A modified relaxation method was used for the parallelization. The simulations
were performed on the intel Paragon. We discuss the implementation in detail.

1. Basics

The Hamiltonian of the spin-½ Ising model is

7"[= - - J ~ - ~ S i S j -- H Z S i , S i ~ {'q-l). (|)
(i j) i

J denotes the coupling constant, sj represents the spin at the position j . (i j l means that
the sum is taken over next neighbors only. The magnetic field is indicated by H. In this
paper we describe simulations of the 3D Ising Model without magetic field (H = 0). Up
to now only the two dimensional Ising-Model is exactly solved. The standard approach
for treating the three dimensional Ising-Model is the simulation. Especially the critical
exponents are of interest. Possible algorithms like single spin flip algorithm [6] or Wolf
algorithm [5] for large system habe already been implemented. In this paper we present
the first parallelisation of a 3D-Swendsen-Wang algorithm we know of.

The single spin flip algorithm chooses a spin si satisfying detailed balance and flips
this spin with a temperature dependent probability, e.g. with P = exp(2Js i ~ j s j k T) .

One drawback is the critical slowing down, especially at the critical temperature, so that
many configurations have to be discarded, due to high correlations.

0378-4371/94/$07.00 (~ 1994 Elsevier Science B.V. All rights reserved
SSD10378-4371 (94)00197-9

278 M. Bauernfeind et al./Physica A 212 (1994) 277-298

In the single spin flip algorithm the individual spins are of interest; in the cluster
algorithm bonds between neighbouring spins are of interest. Fortuin and Kasteleyn [1]

showed that it is possible to rewrite the traditional partition function of the Ising model
in single spin representation to get a partition function in cluster representation. Of the
two possible dynamics, we use the Swendsen-Wang cluster algorithm [3]. Adjacent
parallel spins are linked with probability P = 1 - e x p (- J / k T) , then they are flipped
together with probability of 0.5. Via this long range dynamics, the algorithm avoids
critcal slowing, thereby saving CPU-time.

Recently Tamayo [2] and Hackl [7] implemented two dimensional Swendsen-Wang

algorithms efficiently on parallel computers. Adapting this program for three dimensions,
several problems occured. The part of the program handling the communication had to
be rewritten from scratch. In this paper, we present the two major parts of the program,
the local label generation and the communication models.

2. Local label generation

2.1. Hoshen-Kopelman-Algorithm

The method of local label generation is based on the work of Hacki [7]. The Hoshen-
Kopelman-Algorithm [4] was implemented for a 3D spin system. The local code was
only a 3D-modification of the 2D-code in [7]. The only difference is that the number
of neighboring elements increases from four to six.

Hoshen and Kopelman developed a multi-label algorithm in which it is possible to
refer to a cluster with more than one label. In an additional one-dimensional array, the
so-called owner list, it is noted that cluster I owns cluster k. That means that the label l
is found in the k-th owner list entry. Such an entry is by our definition never negative,
since the labels are never negative. But label ! can also refer to another cluster. A cluster
that refers to no other cluster and, therefore, belongs to itself, is called a root cluster.

After the local cluster process has come to an end, it is necessary to decide which
cluster should be flipped. Bit 30 is used as a flag in the owner list, since bit 31 represents
the minus sign (bits are numbered from 0 to 31). This flag 30 is cleared in all root
clusters with a probability of 50%, since entries of the root clusters are negative. This
information is transferred to all dominated clusters. This makes is possible to quickly
determine whether an individual spin should be flipped, since every spin must only be
checked in one owner list entry and not checked iteratively.

With this information it is easy to decide whether a certain spin should be flipped.
First, the corresponding cluster label must be extracted from the label array. Second, the
flipbit in the corresponding entry of the owner list must be checked.

M. Bauernfeind et al./Physica A 212 (1994) 277-298 279

2.2. Program realization

Fig. 1. System with four clusters.

The 9 Byte Algorithm developed by Hackl in [7] , page 22, is used. In this algorithm,

9 bytes o f memory per site are needed. These 9 bytes are:

- 1 byte (c h a r) represents the spin (' 1 ' or ' - 1 ') . It is not useful to store the spins in

bit-coded form, beause the memory saved is insignificant compared to the effort to
compute the spin-coding.

- 4 bytes (l o n g) represent the cluster labels for every element.

- 4 bytes (l o n g) for the owner list, if the worst case scenario is assumed, so that
every spin is its own cluster, i Owner list entries that are greater than or equal to the

lowest local label indicate that the corresponding cluster belongs to the cluster with

this label. This condition can be used to refer to the cluster sizes of the root clusters
with negative numbers ((- 1) • cluster size).

- The first two data fields are as 3-dimensional arrays, whereas the owner list imple-
mented is a one-dimensional array.

- The use o f a sentinel (0-spins to mark the boundaries) was avoided to save storage.

- The program was implemented in C. Code written in C on the Intel Paragon that
doesn' t contain much floating-point operations is marginally faster than a comparable
Fortran-program.

- We use periodic boundary conditions.

The sites are always processed in a pre-determined order. One starts with (0 , 0 , 0)

and goes layer by layer (z-axis) through the system (for the definition of the coordinate
axis see Fig. 1). The layers are processed line by line (y-axis). It is therefore better to
define the array in the form

] At T < oo, the necessary length of the list can be found empirically by running the program. As the
largest runs of the code were not troubled by storage shortage, but by lack of CPU time, this is not absolutely
nece~ary

280 M. Bauernfeind et al./Physica A 212 (1994) 277-298

v a r i a b l e n a m e [z] [y] [x].

If the size of the local system is lx , ly, l z , then an array in the form of c h a r s p i n

[l z] [l y] [Ix] is used. No sentinel is used: As the number of dimensions increases,

e.g. zero-spins at the boundaries would take an inordinate amount of memory compared

to the other spins.
The choice of a label is made according to whether a bond exists to a neighboring

element. A bond exists when the neighboring spins are parallel and p < I - e -2J/kr, p

is created by the random number generator. In general, there are 4 possiblities.
- no bond

- bond in one direction

- bond in two directions

- bond in three directions

If no bond exists, a new cluster is created. The label counter is then raised by 1. The

new cluster refers to this number. The corresponding owner list entry is set to - l, since

every new cluster belongs to itself and contains one spin.

If a bond exists in one direction, then the cluster label of the neighboring element is
taken. The cluster labels are always the root labels. The entry in the owner list for this

cluster is also lowered by l, since the cluster has grown in size by one spin.

If bonds exist in 2 directions, it is necessary to test whether the bonds indicate two

different clusters (root clusters). If both cluster labels are the same, then the processing
is identical to the situation in which only one bond exists. The second bond brings no

additional information. The dominant cluster label is chosen. The owner list entry of

the dominated cluster is added to the owner list entry of the dominant cluster. The the

owner list entry of the dominant cluster is lowered by 1, the entry in the owner list of

the dominated cluster indicates the new root cluster.

The same is true for bonds in three directions. Instead of one dominated cluster, two

dominated clusters exist. The process is otherwise anologous to the previous situation
in which bonds in two directions exist.

The label that was generated after this fashion is stored in the label array.
The boundary spins do not check all directions. Since no zero-spins exist in the array

as sentinels, it is necessary that the program is able recognize the boundaries via the
loop indizes. So superfluous i f tests can be avoided.

After the local cluster process has come to an end, it is necessary to decide which
cluster should be flipped. Bit 30 is used as a flag in the owner list, since bit 31 represents
the minus sign. To realize the cluster flips, flag 30 is cleared in all root clusters with
a probability of 50%, since entries of the root clusters are negative. This information

is transferred to all dominated clusters. This makes is possible to quickly determine
whether an individual spin should be flipped, since every spin must only be checked in
one owner list entry and not checked iteratively.

With this information it is easy to decide whether a certain spin should be flipped.
First, the corresponding cluster label must be extracted from the label array. Second, the
flipbit in the corresponding entry of the owner list must be checked.

M. Bauernfeind et al./Physica A 212 (1994) 277-298 281

Node 0

Node 1
LZ
_~ Node 2

Node 3

[~ LX ~']

Fig. 2. Layer distribution of the nodes.

3. Communicat ion models

Our parallelisation is realized by geometric parallelisation, the spin arrays are dis-
tributed among the nodes. This would be a geometric parallelisation. One problem that
arose in programming the parallel subroutines was that the growing number of dimen-
sions caused the number of boundary spins to grow disproportionately to the number of
nodes. It became apparent that it was only sensible to use host models with 16 nodes,
since a number of nodes greater than 16 results in the host arrays becoming larger that
the local arrays. With more than 16 nodes, the speed of the program slowed dramatically.
For the sake of completeness, this model is presented in spite of this problem.

3.1. Host models

The host model (Fig. 3) is basically a globalisation of the Hoshen-Kopelman-
Algorithm (see section2.1). Global data are sent to an individual node, the host node,
and processed there. This node uses a host owner list. The simplest example of this
model is the strip model (Fig. 2).

The diagramms are presented in two dimensional form for the sake of simplicity. The
flip bit is ignored in the owner list.

3.1. I. Strip model

For this model, the spin array is divided into layers (see Fig. 2); the individual layers
are assigned to different nodes. Every node processes only one part of the system.

Every node is also responsible for the processing of the boundary spins in x and
y directions. Each node also shares two boundary areas with the neighboring nodes.

282 M. Bauernfeind et al./Physica A 212 (1994) 277-298

Node 0

Node 1

Node 2

Node 3

sp in a r r a y s at th e n o d e s

I I I
[t .l -I] L .l .l ~ sp in a r r a y a t the h o s t

i i " -1 -/ I 1 1 -1

I / I , 2 , 2 ,
i -I -2 -2 1

I I -I 1 -1 1 1 -1 1 -I

I I , ~ 1 2
1 1 1 , I ' 1 I [~ l ' 1 I .1 1

i i i 1 . , 2 1
1 -I -1 -i I -I -1 -1 -1 -I

"1 I [I 1
I 11 1 1 - 1 1 I I ' 1 -1

I 1 -1 -1 -I -1 -1

Fig. 3. Transfer of the boundary spins to the host.

Node 0 also acts as the host. Node 0 must connect the clusters that extend beyond the
local boundaries. For this purpose, the following information is needed:

(i) where bonds exist beyond the boundaries of the nodes,

(ii) to which clusters these spins belong.

One simple way to do this would be to send all boundary spins to the host, which would

store them in an array of the size Ix × ly × 2 • (number of nodes), since 2 × Ix x ly is

the size of the boundary area. The presence of bonds would not yet be known. The host
could proceed as in the local section of the program; for all host spins, the probability

of a bond would be calculated. That would take too much time and would force the

other nodes to wait.

It is better to mark the boundary spins before sending them to the host. Every node

then evaluates its upper boundary spins for the existence of bonds. If no bonds exist,

then the corresponding spin is multiplied by two before it is sent. The host must then

test for equality, since the boundary spins take the values -2 , -1 , I and 2, across the
node boundaries(see Fig. 3).

The handling of cluster label is more difficult. If the local labels were taken, then

there would be several clusters with the same label. This would make the determination
of the dominating cluster impossible.

The simplest method is to choose different labels from the start. Assuming that there

were k spins at each node, then the cluster labels at node 0 would be 1 . . . k, and at
node 1 k + 1 . . . 2k, etc. The problem would be that the label array and the owner list
would be connected to each other. The complete owner list would have to be transferred
to the host, whereby the memory limits on node 0 would soon be reached.

The better method is to create individual boundary labels. If I is the number of spins
on a boundary area, then all local clusters start at 2l + 1. The first 21 numbers are left
free for the boundary labels. The local root clusters on the boundary area are transferred
to these boundary clusters. Only the first 2l elements of the owner list must be sent to

M. Bauernfeind et al./Physica A 212 (1994) 277-298 283

27 15 i 31 I 28

boundary label array

local label array

boundary label array

Fig. 4. Preparation of the boundary labels.

local owner list

l 2 3 4 5 6 7 8 9 io II 12

l 0 I 0 o 10 I o I ° i o l or o l 0 [o l o l

13 14 15 16 17 18 19 20 21 22 23 24
[- 8 I - I I ~] - I [15] 13] - 4] - 8] 19 1 20 I - 3 I 19]

25 26 27 28 29 30 31 32 33 34 35 36

I 20] 19] - 2 I - I I 13] 20] - i [- 1 I 0 I 0] 0 [0 I

1 2 3 4 5 6 7 8 9 l0 II 12

I -8 [-I] -6 [-I [-2 1-' 1-' 1-' 1 0 1 0 [0 I 0 I

13 14 15 16 17 18 19 20 21 22 23 24

[1 1 2 [3 [4 I " 1 ,31 4 1 8 1 1 9 1 20 I -3 1 , 9 1

25 26 27 28 29 30 31 32 33 34 35 36

12o l 19 [5] 8 1 1 3 1 2 0 1 6 17 I 0 I 0 l 0] 0]

Fig. 5. Preparation of the local owner list.

the host (see Fig. 4).
Additionally, the owner list must be broadened (see Fig. 5), whereby the old local

clusters indicate the new boundary clusters. In the area of the boundary labels, the owner

list contains only root clusters.
The boundary labels (see Fig. 6) and the corresponding section of the owner list

(see Fig. 7) are now sent to the host and given a 21. (node number) offset, since

21. (node number) is the size of the total boundary area. Through this process, the

labels are made unambiguous.
The clusters must be connected to each other at the host using the same rules that

are used for the local routines. Finally, the current owner lists must be sent back to the

284 M. Bauernfeind et al./Physica A 212 (1994) 277-298

I

node 0

n ~ e l

t~ode 2

n ~ c 3

local owner list host owner list

21-1

lowest local label

21 21* 1

I 21 21÷1 41 41+1 61 61+1 81

t I I 1 _]

' T : T
I

1
Fig. 6. Transfer of the boundary labels to the host.

local label array

+ 0(21)

node 2 a b - . c d 1 +2(21)]

I e I f I__ ~ h

e

21+a

21÷e

41+a

41+e

61+a

61+e

l

Fig. 7. Transfer of the owner list to the host.

host label array

I
b I c

I J g

21+b 21+c

21+f 21+g

41+b 41+c

41÷f 41+g

61+b 61+c

61+f 61+g

d

h

21÷d

21+h

41+d

41+h

61 *d

61 +h

individual nodes, where the flip bits are also transferred.

In keeping with this method, the host must reserve memory space for Ix x ly x 2 .

number of nodes) spins. The host must also reserve memory for the same number of

labels and owners. All other nodes do not make use of this reserved memory space,since

the same code is used on all nodes.

The memory space for the host labels can be saved by transferring the information

to the owner list. This method corresponds to Hackl's 5 byte algorithm [7] , page 24.

This reduces the amount of memory needed by a little less than 50%. Every spin

position is represented by an owner list entry. The upper boundary labels are transferred

to the elements 1 l and the lower boundary labels are transferred to the elements

l + 1 2l of the owner list (see Fig. 8).

M. Bauernfeind et al./Physica A 212 (1994) 277-298

local label array

13 13 14 15 1 15 I 16

i i 27 15 31 32 13 28

local owner list

285

I 2 3 4 5 6 7 8 9 10 11 12

I 01 o10 I 01 01 01 o[01 01 01 0 1 0 I

13 14 15 16 17 18 19 20 21 22 23 24
[- 8 [- 1 I - 6 [- 1 I 15 I 13 I -4 [- 8] 19 I 20 [- 3 I 19 [

25 26 27 28 29 30 31 32 33 34 35 36

1 2 0 1 19 I -2 [- 1 It31 201 l I i I0 10 [o Io I

local owner list

1 2 3 4 5 6 7 8 9 I0 11 12
I - S [1] - 1 I - 6 [4 I - 1 I - 2 I 4 1 -1 [- 1 I 1 [- 1]

13 14 15 16 17 18 19 20 21 22 23 24
[1 [3] 4 l 6 [15 [13 [-4 I -8 1 19 [20 I -3] 19 [

25 26 27 28 29 30 31 32 33 34 35 36

I 2°1 19l 7 I 12] 13l 2°1 9 [I ° l ° I 0 [0 I 0 I

Fig. 8. Merging of the local boundary label army and the owner list.

3.1.2. Cube model

In the cube model , the spin array is cut into cubes and distributed among the nodes

(see Fig. 9) .

The result is a model with six instead of two boundary areas. It can be shown that

beyond 8 nodes, the number of boundary spins is smaller than in the strip model.

If the spin array is cubic with boundary length L and n is the number of the computer

nodes, then the number of boundary spins which must be dealt with at the host is

Strip: L 2 • 2 • n. (2)

For an even cubic dis t r ibut ion (n = x 3 with x C { 2 , 3 , 4 }) , the number of boundary

spins is

Cube: ~ . 2 . n . 3 = 6 . L 2 . n I/3 (3)

286 M. Bauernfeind et al./Physica A 212 (1994) 277-298

/ T
LZ

1

I

i I

/
I(I.X)l

Fig. 9. Cubic node distribution.

It can be shown, that when 8 or more nodes are used, the number of boundary spins
in the cube model is smaller than the number needed in the strip model, independent

from the system size L. Eight nodes represent the smallest truly three dimensional

parallelization. Their distribution in the x : y : z directions is 2 : 2 : 2.

For a (z /2) cubic distribution (2n = x 3 with x E {2 ,3 ,4 }), the number o f

boundary spins is

Cube (z /2) : (2n~l/3 + 2- (2n)l/3 (2,),/3 - 2 . n = 5- (2n) 1/3 L 2. (4)
2

Here it can be shown that beyond 32 nodes, the number of boundary spins becomes
smaller than in the strip model. A system with 32 nodes represents the smallest three

dimensional cube (z/2)-distribution: 4 : 4 : 2.
For a (x/2, y/2) cubic distribution (4n = x 3 with x E {1 ,2 ,3 }), the number of

boundary spins is

Cube(x/2,y/2): - - + 2 . (4n)t/3 (4,~,/3 2 . n 4 (4n) V3 L 2. (5)

In this case the minimal node number is 16, which represents a 2 : 2 : 4 distribution.

3.2. Relaxation model

Flanigan and Tamayo's [2] relaxation model offers an alternative solution to this
problem. In this model, no host is used. Communication is only carried on with the

logical neighbor. These often differ greatly from physical neighbors which are connected
through communication lines. (see Fig. 10). The cubic model is used to minimize the

necessary communication.

M. Bauernfeind et al./Physica A 212 (1994) 277-298 287

loglcal diltnbutlon

2 3

I sl ,7

phyac, n[dll~nbutlon (Paxa~on)

becomes

[I 2 - - 3 - - 4 ~ ~ + [9 - - [1 0
I I t I I ~ - - - I 7 -
1 1 - - 1 2 - - 1 3 - - 1 4 - - 1 5 - - 16--- 1 7 - - 18-'-- 19"----20
I I I I I I I I I I

Fig. 10. Map from logical to physical distribution.

Z-

X - /
y-

/ y+

:~ X+

Z+

Fig. I 1. Terminology of the three--dimensional directions.

Since it is important in this communication that the relative position of the neighboring
elements is clear, a special terminology of directions (see Fig. 11) is introduced.

3.2.1. Basic principle

The relaxation is divided in three steps: the preparation phase, the relaxation phase,
and the evaluation phase.

Preparation phase: In this phase, the system is prepared for the relaxation. Two tasks
must be completed:

(i) Every node must know where bonds exist to its neighbors.
(ii) The local boundary label must be prepared.

The bonds are merged into the boundary spins, analogously to Section 3.1.1. In each
dimension, the bonds must be determined in just one direction, since the bonds from x
to y must be the same as from y to x (see Fig. 12).

These spins are then sent to the logical neighbor in all six direction (see Fig. 13).
Every node then knows where its clusters have bonds to clusters of other nodes. These
do not change during the relaxation phase.

288 M. Bauernfeind et al./Physica A 212 (1994) 277-298

boundary spins local/~s/oin array

L- t

° - ' "1-' '1-* ' o : , , 1 7 ,
o 12 I -I -I.
o I l l - i ~ I

o 0 IOj

Fig. 12. Preparation of the boundary spins for relaxation.

node 0 node I

I 1 I -1 -1 -I -1 I -1 1 1 1 1 1

1 2 1 1 -1 1 1 1 I 1 I 1 -1 1

-1 -2 -1 I -1 -1 -1 7 -I 2 1 1 1 -1 -

I -2 -1 -1 -1 -I -1 1 -1 1 [1 1 I 1 1

-1 ~1 -1 1 1 1 ; | -1 I -1 -11 1 1 -1 -

1 ,: 1 -1 1 1 1 1 1 I 1 1 1 1

-2
-2

12

node 2 node 3

Fig. 13. Communication of the boundary spins with the neighbours (the third dimension is not shown).

M. Bauernfeind et al./Physica A 212 (1994) 277-298 289

local lid~l array boundary label ~rtty

1 1 5 1 3] 19 I 20] 1 1 1 6 1

local owner list

I 2 3 4 5 6 7 8 9 10 I1 12

I -~o l ; I ~ I-;,01 3 1 ~ 0 1 " ~ o 1 8 17"~18 1~ ,o l7~01

13 14 15 16 17 15 19 20 21 22 23 24

I ~ 17~ol = I ' ~ 0 1 ; ~ n l ~ I'~01 , I 0 I 0 I o I 01
Fig. 14. Preparation of the boundary spins.

(0 fhp bit set

node #1
spins per node: 36

Fig. 15. Simple scaling of the boundary spins.

node #1
-I -1 2 3 3 -4

I 1 1 1 1]

15 3 -19 20 -1 -16

1 1 1 1 I 1

Fig. 16. Scaling of the boundary spins with atruct.

The boundary labels consist only of root cluster labels. Only the flip information is
added. Since the number of boundary clusters is by definition positive, the flip bit can
be represented by a minus sign (see Fig. 14). The smallest possible local label is !,
since - 0 does not exist as an integer.

As in the host model, the boundary labels must now be made unambiguous. The
simplest method to achieve this goal is to add an offset of the number of the local
spins to the absolute value of the boundary label. The sign must then be restored (see
Fig. 15).

This method works up to an boundary length of the entire system of 1024 spins.
For larger systems, the boundary label must be expanded. The most appropriate way to
do this is to mark the boundary label so that its home node is apparent. To minimize
the communication needed, both data are summarized in a s t r u c t new={long l a b e l ;
s h o r t node; } command (see Fig. 16).

Since no global owner list exists in this model, it is not possible to determine the size
of the clusters spanning over more than one node.

290 M. Bauernfeind et al./Physica A 212 (1994) 277-298

Relaxation phase: The relaxation phase consists of at least one relaxation cycle. This
cycle is repeated until nothing has changed in the system since the last cycle. This is
necessary since the information in each node can only be passed in every cycle to one
further node.

The relaxation cycle consists of six relaxation units; each unit represents one direction.
The order of these units within a cycle can be arbitrarily chosen. It is only important
that the order be consistent for all nodes.

A relaxation unit always follows the same series of steps; this series of steps runs

simultaneously on all nodes. A relaxation unit processes only the boundary label. The
local labels are not altered at this time.

Suppose that the relaxation takes place on the (x -) boundary. The following steps
would take place:

(i) The local (x +) boundary label would be sent to the neigboring node, which lies
opposite to the (x +) boundary.

(ii) The boundary label would be received from the neigboring node, which lies op-
posite to the (x -) boundary.

(iii) The spin array of the (x -) boundary is processed element by element.
(a) The spin is tested for the existence of a bond (spin equality) with its neighbor.
(b) If a bond exists, then the label received from the neighbor is tested for

dominance. The element with the smallest absolute value, since the minus

sign indicates the flip bit, dominates.
(c) If the label of the neighbor is dominant, then the dominated label is replaced

by the dominant label throughout the entire node. Not only the labels on the
(x -) boundary can be changed, but also all labels on all other boundaries?

Example: For the sake of simplicity, the process of finding the root labels over
several processors for a two dimensional array is explained in one dimension.

First, all nodes send their boundary labels in one direction. In this diagram, all
boundary labels are sent upwards. It is important to note that node three is above node

0 (see Fig. 17).
All nodes now assume the dominant label. This occurs in Fig. 18 in node 3. All

boundary labels of 31 and 32 are replaced with the label 2.
The updated boundary labels are now sent downwards and processed in the same way

(see Fig. 19).
At the end of this unit, clusters 1 and 3 have migrated from node 0 to node 1 and

cluster 11 has migrated from node 1 to node 2.
This ends the first relaxation cycle. After three further cycles (see Figs. 20-22), the

information has been distributed to the entire system. In order to simplify the diagram,
the boundary labels replace the local labels.

After the second relaxation cycle has ended (see Fig. 20), the entire picture is
dominated by clusters with a home node of 0.

M. Bauernfeind et al./Physica A 212 (1994) 277-298 291

scale factor 10

node 0

node 1

node 2

node 3

I I I I l l l

~lll I I I 1121

i i [i / ~

l l 21

II l~, II

-21

-32

I: I Ii

node 0

node 1

node 2

node 3

1111111

(/

l: ItFI
Fig. 17 Fig. 18

Fig. 17. The first relaxation cycle: sending the labels upward.

Fig. 18. The first relaxation cycle: processing of the labels.

The cluster has now distributed itself over the entire system. Inspite of this, another

relaxation cycle must be started, since the system does not yet know that the relaxation

phase is finished. It is only clear at the end of this cycle that no new changes have

occurred.

292 M. Bauernfeind et al./Physica A 212 (1994) 277-298

Fig. 19. First relaxation cycle: direction of relaxation is downward.

situation at beginning of cycle after upward relaxation

)
after downward relaxation

Fig. 20. Second relaxation cycle.

M. Bauernfeind et al./Physica A 212 (1994) 277-298 293

after downward relaxation after upward relaxation

Fig. 21. Third relaxation cycle.

after upward relaxation

/ .

• ,alter downward relaxation

Fig. 22. Fourth relaxation cycle.

294 M. Bauernfeind et al./Physica A 212 (1994) 277-298

local label array local owr~r lisl (I') fit!0 bit ~el

1 2 3 4 5 6 7 8 9 10 I1 12

,3 , . ,. ,. ,7 ,8 ,~ 20 2, .2 23 24
I ~ 17~ -2 I - . 0 1 , ~ 0 1 ' I ' ~ 1 ' I 0 I 0 I 0 1 0 1

boundary label array

-1 -I 2 2 -I -I

local owner list (13 flip btt set

1 2 3 4 5 6 7 g 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24

I ~ 1 ' ~ 1 ~ 1 " 0 1 1 ~ 0 1 8 1 ' I ' l ° I ° 1 0 1 0 1

Fig. 23. Evaluation of the boundary spins.

Evaluation phase: At the end of the relaxation, the results must be translated into the

local system. Since every boundary label is unambiguously assigned to a certain label,

the flip information can be transferred to the local owner list. This information must

then be transferred to the local subclusters (see Fig. 23).

3.2.2. Optimization
During the relaxation phase, it might be of interest to know:

(i) whether too much information is transferred,
(ii) whether too many boundary labels are updated.

To answer these question, it is necessary to employ channel reduction and a net list.

Channel reduction: It is unimportant for the relaxation algorithm whether the boundary

labels consist of clusters with or without a bond to the next node. The boundary labels
without a bond are only decoration, since the changes in these boundary labels have
no effect on the neighboring labels. For this reason, boundary labels are only generated
where a bond to a neighbour exists. The number of transferred boundary labels is

reduced through this process. The transferred labels could be compared with information
channels between the individual neighbours. The term channel reduction is used for this
reason. For an boundary label it is not important what exactly its position is in the local

system. Since the neighbor behaves in an identical way, both create the same number
of boundary labels (see Fig. 24). For example, the labels of the third spin in the first
row are no longer tested, but rather the labels of the first bond between the neighboring

M. Bauernfeind et al./Physica A 212 (1994) 277-298 295

~FT-F T ~-
. i l I

I
I I I I I I I

Fig. 24. Channel reduction.

I

nodes. The evaluation for the existence of a bond is no longer necessary, since only
bonds are transferred.

The evaluation works inversely in an analogous process. The spin array is searched
for bonds. Where bonds exist, the next boundary label is taken.

In this way it is possible to reduce the number of transferred labels by at least 50%
(at T = 0). As the temperature rises, at Tcrit w e save 73% of the number of labels, since
the probability to form bonds decreases.

Net list: The process of testing all boundary labels before changing a local boundary
label is actually a brute force approach. It would be rare that so many boundary labels
would be connected by a local cluster. The number of boundary labels would also be
reduced through channel reduction. A Hoshen-Kopelman-Algorithm is not appropriate,
since it would use up too much memory. A different approach is necessary.

Every local boundary label is given two additional pieces of information:
(i) the first boundary label that belongs to the same local cluster,

(ii) the next boundary label that belongs to the same local cluster.

If the boundary label is changed, then it is only necessary to check in the net list [start]
(see Fig. 25) to see what the first boundary label of this local cluster is.

If this cluster consists of one boundary label or if it is the first label of a row, then
this label indicates itself. The new label is copied to this entry of the boundary label
array. If further boundary labels of this cluster exist, they are successively changed. A
zero in this list means that the last entry for this cluster has been reached. In order to
be able to achieve this optimization, all boundary labels must be placed in a single one
dimensional array, since only the bonds are numbered.

296 M. Bauernfeind et al./Physica A 212 (1994) 277-298

numbering of the edge hst

I 2 3

9

10

net list

I 2 3 4 5 6 7 8 9 10

Sl.a/'t

ilex[

4. Benchmarking

Fig. 25. The net list.

We used the Intel Paragon at the Zentralinstiut for Mathematik at the KFA Ji.ilich with

140 nodes of i860 Processors. The time used by the local part of the program can be

described by

ttoc= a ln + a2n In(n). (6)

n denotes the size of the system. The part aln considers the label generation for every

individual spin. The iterative search in the owner list is represented by a 2 n l n (n) . The

running time of the part of the communication part is more complex. Empirically we

could fit the time to

tcom = al + a2l + a 3 n l n (n) + a411n(l) + (7)

but there may still be some terms left out. l denotes the total boundary length and n

the system size. al is something like a setup time. a2l expresses that the time needed
increases with the amount of boundary labels which have to be send. a3n In(n) is forced

by the owner list and aal In(l) indicates the net list.
In table 1, we give the effciencies and update-times for various processor numbers

and system sizes. The efficiency r/ was computed as ttocat/(tto~.~t + tglobal), ttoc~t and
tgtobal were measured on node 0 via the mclock-function.

The efficiencies of the 140-processor systems are also plotted in Fig. 26.
The trouble with table 1 is, that though the efficiency increases, so does the necessary

amount of time /spinflip. Several competing effects are at work: On the one hand, to
realize periodic boundary conditions, the relative amount of CPU time increases (against
all expectations, but consistent with the behaviour of our scalar code on a single node).

On the other hand, the optimal System lengh is 2803, because the message length fits
exactly into the communication buffers. The effects could not be properly investigated,
because too few system sizes can be run: non-cubic local systems exhibit different
runtime-behaviour in the local routines due to different boundary conditions.

M. Bauernfeind et al./Physica A 212 (1994) 277-298 297

Table 1

Nproc L ,~ "rl in % ns/spinflip

64 643 2.6 x 105 18 252
128 963 8.8 x 105 20 115
128 1283 2.1 x 106 78 89
140 1403 2.7 x 106 20 109
140 2803 2.2 x 107 26 88
140 4203 7.4 x 107 87 109
140 5603 1.8 x 108 92 125

The system-sizes which are marked with a * were measured at the critical temperature, the other measurements
were made over a range o f temperature symmetrically to the critical temperature.

95

90

85

80

75

70

65

60

55

50

45

40

/
i

/
/

!

/
I

/
/

I i I I i I I I

2e+07 4e ,07 6e+07 80+07 le+08 1,2e+06 1 40+08 1 6e+08 1.8e+08
system size

Fig. 26. Efficiency versus system sizes on 140 nodes. The line is guideline for the eye only.

Comparisons to 2D-codes are also very problematic, because the necessary amount
for communication is much higher in 3D. Therefore, the communication routines had to
be much better optimized to avoid the communication of redundant data (see channel
reduction in Section 3).

5. Conclusion

We have shown that it is possible to successfully parallize a three dimensional
Swendsen-Wang algorithm. When rising the number of dimensions a more and more
sophisticated communication pattern will be needed. This is important because of the
increasing amount of communication.

The best single spin update time we achieved was 88ns on 140 nodes on an Intel

298 M. Bauernfeind et al./Physica A 212 (1994) 277-298

Paragon. The largest system we simulated had an edge length of 560. This size represents

not the largest possible system, but the size we could process in a reasonable amount

of time.

The differences to the 2D-case were, that no efficient host-node model was possible

even theoretically due to storage requirements, so the relaxation algorithm was the

method of choice. Apart from channel reduction, no further tricks compared to the

2D-algorithms had to be employed to obtain high efficiency.

Acknowledgement

We thank the Zentralinstitut ftir Mathematik at the Forschungszentrum Jtilich for

providing the necessary Computer-time on the Intel Paragon and J. Docter for support.

References

I 1] C.M. Fortuin and EW. Kasteleyn, Physica 57 (1972) 536.
[2] M. Flanigan and P. Tamayo, Int. J. Mod. Phys. C 3 (1992) 1235.
[3] R. Swendsen, J.S. Wang, Phys. Rev. Lett. 58 (1987) 86.
141 J. Hoshen and R. Kopelman, Phys. Rev. B 14 (1976) 3438.
[5] N. Ito, PhD thesis, University of Tokyo, December 1990.
[6] C. Miinkel, D.W. Heermann, J. Adler, M. Gofman and D. Stauffer, Physica A 193 (1993) 540.
[7] R. Hackl, Diplomarbeit, Institut Physik !I - Festk6rperphysik der Universit/it Regensburg, January 1994.

