
PHYSICA 
H.qEVIER Physica A 212 (1994) 261-276 

Efficient parallelization of the 2D Swendsen-Wang 
algorithm 

R. H a c k l  a, H . - G .  M a t u t t i s  a'b, J .M.  S i n g e r  a, Th .  H u s s l e i n  a, 

I. M o r g e n s t e r n  a 
a lnstitutfiir Physik II, Universitat Regensburg, Universitiitsstrafle 31, 93053 Regensburg, Germany 

b HLRZ, c/o KFA Jiilich, Pos~fach 1913, D-52428 Jiilich, Germany 

Received 10 July 1994 

Abstract 

We established a fast Swendsen-Wang algorithm for the two-dimensional Ising model on parallel 
computers with a high efficiency. On an Intel paragon with 140 processors we reached spin update 
times of only 14 ns with an efficiency of 89%. This algorithm was used to examine the non- 
equilibrium relaxation of magnetization and energy in large Ising systems of a size up to 17920 
x 17920 spins. Nevertheless we observed still a strong finite-size effect for the magnetization. 
We assume both magnetization and energy decay to behave like (t + f l)-a e-bt in an infinitely 
large system. Thus, for long times magnetization and energy show an exponential, asymtotic 
time-dependence, implying a critical dynamic exponent z of zero. 

1. Introduction 

Although or even because the Ising model is already solved in two dimensions ana- 
lytically, it is one of  the numerically best investigated models. In spite of  its simplicity 
physicists can gain a lot of  insight and experience from it that proves to be fruitful 
dealing with more complex models. 

Hence, especially in the 1980's, the Ising model was explored on more and more 

powerful computers and architectures. It turned out, however, that at the critical temper- 
ature consecutive spin configurations are highly correlated if single spin flip dynamics, 
like Metropolis or Heat Bath, are used. This effect is known as 'critical slowing down' .  

So, the Ising model resisted a numerical examination at the critical point. Hence, signifi- 
cantly more precise results could not be achieved just by an increase in computer power. 
Only the cluster dynamics invented by Swendsen and Wang resolved this problem [ 1 ]. 
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The supercomputer architectures of the 80's, the vector computers, seem to reach a 
similar limit. An enhancement in computational power is possible only with an enormous 
increase in energy and costs. 

Therefore, the new parallel computers, especially the MIMD-systems, are expected 
to become a promising alternative although they are right at the beginning of their 

development. The Intel Paragon with 140 nodes for example has a theoretical peak 
performance of 11.5 GFLOPs and the new 9076 SP 2 of IBM is announced to have a 
peak performance of 30 GFLOPs with 256 processors. 

An algorithm has to fulfill two requirements to use such a parallel architecture effi- 

ciently. First it needs a good sequential algorithm as for any single processor machine. 
Secondly, there must be an efficient way of exchanging relevant data between computa- 
tion nodes. 

The first pan will be called 'local algorithm' in the following, as the processor uses 
only data stored in the local memory, the second part 'global algorithm'. In the latter 
pan, both communication of global data and their processing takes place. 

In contrast to the Metropolis algorithm which is not very difficult to parallelize, the 
Swendsen-Wang algorithm was tackled by several teams in order to find an efficient way 
of data exchange [2-5] ,  but only M. Flanigan & P. Tamayo succeeded in implementing 
a communication method - they called it 'relaxation' - ,  which yields an enhanced 
computational speed even with several hundreds of processors. 

The most reasonable way to parallelize the Swendsen-Wang algorithm is a geometrical 
parallelization, i.e. cutting up the total system into several local systems, each processed 
by one node. So far, two ways of decomposition have been used: strip geometry and 
square geometry. The square geometry is more favorable than strip geometry because 
the ratio of boundary length to interior area is smaller. 

2. The local algorithm 

On these local systems we first tried to develop a properly tuned local algorithm which 
we have already described in [5]. It turned out that the most important points one has 
to care for in order to optimize performance, are a fast generation of random numbers 
and an advantageous use of the cache. The latter is not straight forward because read- 
and write-accesses to the ownerlist, where we store the information of cluster relation, 
are hardly to predict due to indirect addressing. The cache handling is a crucial factor 
especially at the Intel 860 RX processor used in the Intel iPSC/860 Hypercube because 
this processor has a data cache of 4 kbyte in each set only. 

As the results produced with different random number generators did not show any 
relevant difference, we chose the CONG l [3] which appeared to be the fastest one. 
The bit shift random number generator [6] proved to be only slightly slower. 

Fig. l a shows the update time per spin for quadratic systems of various sizes from 

I multiplication by 16807. 
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Fig. 1. Local update times per spin versus (a) system size, (b) logarithmic system size. 

n = 128 x 128 up to 6144  × 6144.  s imula t ed  on  an Intei  Hypercube .  It seems  to be  

r o u g h l y  cons tan t :  hocat/n = 2 .2  txs / sp in .  

A c lose r  view, however ,  reveals  a sys temat i c  increase  for  bo th  smal l  and  large grids.  

In fact,  o n e  s h o u l d  expec t  tha t  the  local  t ime  behaves  l ike 

ttocal = an + fin In n + y v / n / p  

u n d  thus,  

tlocal/n = ot "t- f l l n n  + T e  -(0'51nn+lnp) 
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where tr, fl and y are size-independent constants and p is the number of processors 
used. The second term is due to iterative accesses to the ownerlist in order to determine 
the root cluster, which grow in number when the number of clusters increases. The third 
term originates in the number of spins on the y-boundaries which is of order x/-n/p in a 
quadratic system (the x-boundaries are treated during the communication period). This 
assumption is corroborated by Fig. I b where the logarithmic behavior can clearly be seen 
for systems with size n greater than 16000. For small systems the expected exponential 
decay can not be confirmed beyond doubt because of high statistical fluctuations, but 

there is no disagreement either. 
Surprisingly, the local time seems to be dependant on the number of processors p 

even for large systems. The reason is that the total system was divided up into p strips 

of size l × ( l / p ) ,  each strip processed by one node. Therefore, the local systems are 
not quadratic, but their shape depends on the number of nodes. A smaller p causes 
wider strips and yields a more complex information about the cluster relation in the 
ownerlist that results in a higher coefficient ft. At the same time the total number of 
local clusters and, hence, the coefficient a decrease, because less random numbers have 

to be generated. 
An additional astonishing point is that the data for system sizes with a linear dimension 

of 1024 spins or a multiple of it, are higher than expected. This is due to the fact that 
two labels adjacent in y-direction are stored in memory locations separated by 4096 
bytes. As this is just the length of a cache set, they map into the same location in the 
cache. This results in numerous cache-misses, especially, because the i860 RX has a 
two-set data cache only. 

From this examination we learn that it does not really make sense to state precise 
update times without mentioning size and form of the system they have been measured 
with. 

We ported our Swendsen-Wang algorithm for a system of size 1024 x 1024 onto four 
different parallel computer architectures: An Intel Hypercube, an Intel Paragon, a CM5 
of TMC, and an IBM SP1 and reached update times per spin of 2.3 /xs/spin, 1.85 
/zs/spin, 3.9/zs/spin and 0.85 /.ts/spin, respectively. 

3. The communication algorithm 

To establish the information of global clusters - clusters extending over more than one 
processor - we implemented three different communication procedures which we called 
host-procedure (HP) [5], relaxation-procedure (RP) [4] and binary-tree-procedure 
(BTP) [2]. 

For the HP all nodes send spins, labels and the ownerlists of the boundaries to one 
processor, the so-called host. There the necessary information about the relation of the 
global clusters is figured out in a process similarly to the local algorithm and stored in 
the host-ownerlist. The host-ownerlist is finally sent back to the nodes which can decide 
by this information whether the local part of a global cluster must be flipped or not. 
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Fig. 2. Global update times with HP (a) , BTP (b) versus n u m b e r  o f  processors. 

For the HP the communicat ion time is proportional to the number o f  nodes p plus some 
p-independent time to prepare the information for communication and to evaluate the 

returned data (Fig. 2a) .  
The RP was introduced by Flanigan & Tamayo. During this procedure adjacent pro- 

cessors repeatedly exchange information about global clusters and relabel their local 
boundaries until a fixed state is reached. It turns out that the communication time is 
roughly proportional to the number o f  processors p with strip geometry. If the system is 
split up into quadratic local systems, however, the communication time is proportional 

to ,v/-ff only [4 ] .  
If we use a strip geometry with n strips, we can group them into n/2 pairs o f  
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Table I 
Total update-times per spin for a 6144 × 6144-system on various computers 

Machine (processors) HP RP BTP 

Hypercube (32) 99.8 ns 78 ns 82 ns 
Paragon (128) - 18 ns 29 ns 
CM5 (64) 106 ns 57 ns 71 ns 

neighboring strips. After having determined the global clusters of  each pair, we end 

up with n /2  strips of  cluster distributions. Repeating this process log 2 n times yields 
the information about all clusters. This has now to be evaluated in the reverse order to 

determine whether a local part of  a global cluster has to be flipped or not. Theoretically 

the communication time should be proportional to lnp. This could be confirmed on the 

lntel Hypercube for up to 32 nodes (Fig. 2b). We are not sure about the reason of  the 

deviation at the value for p - 2. But we think that this is a machine dependent effect 

and not a built-in effect of  the algorithm because a similar behavior is found for times 

of  message-broadcasts to several processors. 
For the Intel Paragon, however, this is no longer true. As the nodes are arranged 

in a two-dimensional grid, communication between not directly connected nodes takes 
longer and prevents the transmitting processors in between from working. This might 

be changed by the next release of  the operating system (OS 1.2), that takes advantage 

of  the coprocessors to communicate data. 

So, we can expect the BTP to be the best suited communication procedure, but only 

if all nodes are homogeneous with respect to communication, as it should be the case on 

the IBM SP1 due to its switch technology. Unfortunatelly we could only use up to eight 
processors on such a machine. Hence, no reliable relation between the communication 

time and the number of  processors could be established. With eight nodes the RP and 

BTP still perform equally well. (See Table 1.) 

4. Non-equilibrium relaxation 

Based on these algorithms we could investigate the relaxation decay of  both magne- 

tization and energy at the critical temperature for a completely magnetized system (all 
spins pointing up) at t = 0, i.e. M ( t  = 0) = 1 2, with a very high statistical precision. 

Recently, the relaxation of  the magnetization was examined by Kerttsz & Stauffer [3] ,  
Tamayo [7] and Hackl et al. [5] .  While Kert6sz & Stauffer proposed an exponential 
decay, Tamayo found power-law behavior with his data lying clearly above those of  

Kerttsz & Stauffer for times higher than 35 (measured in units of  system updates). 
Tamayo was corroborated by Hackl et al., who got the same results within error bars. 

2 All physical quantities are stated by their value per spin. 
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In the case of energy relaxation Ito & Kohring observed a logarithmic singularity, i.e. 
an asymptotic energy decay of the form E ( t )  - Eeq  "~ t - A  In t, for the Wolff dynamics 
[8]. 

For the investigation of the non-equilibrium relaxation behavior one has to take into 
consideration finite-size effects. We simulated systems of size 2048 x 2048, 3552 x 3552, 
6144 x 6144 and 17920 × 17920. For the magnetization we found a similar behavior 
as Kertdsz & Stauffer. For small times the data of all sizes coincide. But when time 
increases, the decay flattens with smaller system sizes (Fig. 3a). 

Thus, to reach reliable conclusions for larger times huge systems must be studied. All 
data presented below refer to the 17920 x 17920-system. 
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On the other hand, in the case of  the energy decay finite-size effects are comparably 
small (Fig. 3b).  

Usually one is only interested in the long-time behavior of  systems. Unfortunately, 
the statistical fluctuations increase rapidly with time (Fig. 4).  Therefore, a prediction 
for the long-time behavior is hard to derive from the data at large times. Instead, we 
tried to describe the decay for moderate t as precisely as possible and found that this 
time-dependency holds for long times, too. To gain small statistical errors we averaged 
460 independent relaxation runs. 

Figs. 5a and 5b show the effective Zeff(t), defined as usual by 

and 

Z e f f ( t ) = - - -  In Ink, M(t )  J 

Zeeff(t) = ( a -  I)  In In E ( t ) - E e q  ,] 

respectively, where a = 0, fl = 1/8 and v = I are the critical exponents for two 
dimensions and Eeq = - x / 2  is the equilibrium energy of an infinite lattice. We can 
observe z~ff decrease linearly in l / t  for 4 < t < 20, indicating a decay in the form 
M ( t )  ~ (t + AM)-aM for magnetization and E(t )  - Eeq "~ (t + dE) -a~: for energy. 
According to this ansatz 

z, , / / ( t )  
1 In(1 + I/t) 
A In (1 + l / ( t  + A)) 

should asymptotically approach the curve 
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fl 1 ( l + A m / t )  or ( a - -  1) AE _ _ _  __1 (1 + A e / t ) ,  
v hM 

respectively, as 1/t  goes to zero. 

However, for t > 20 there is a significant deviation from this linear behavior in 

Zeff, telling that the ansatz above is not the whole story. The same can be seen in the 

results o f  Tamayo, too. But with his error bars it could not be decided whether this is a 
significant effect or just a statistical noise. 

To explain this we define the function 
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[~( t )=AMIn(  t+I+AM)tq-AM + In \ (M(t  + 1)'~/_.0_) ,] 

Assuming a time-dependence of the magnetization of the form M(t) ,,~ (t + AM)-au/ 
f ~ ( t ) ,  we arrive at 

( fM( t+__l ) )  
b ( t ) = - l n \  fM(t)  

The energy can be treated in the same way, of course. Looking at Figs. 6a and 6b we 

see that b( t )  is constant for both magnetization and energy in the range 10 < t < 30, 
with 

bM = 0.0043 + 0.0010, b~ = 0.0281 + 0.0020 

For larger times the fluctuations become too strong. Thus, no trend can be recognized. 
The condition, however, for b(t)  to be constant must be satisfied by the choice of f ( t )  
as  

fM(t)  = e bMt and fE( t )  = e b~t 

respectively. Therefore, we propose a decay of magnetization and energy of the form 

M(t)  ,.~ (t + AM) -aM e-bMt 

and 

E ( t )  - Eeq '~ ( t  + A E ) - a E e  -bv't 

However, so far we did not really tell how to determine the coefficients d and A, 
which we used to attain Figs. 6a and 6b. It turns out not to be a good idea to evaluate 
Figs. 5a and 5b because the influence of the e-bt-term is too strong to be neglected. At 
t = 20 it is already 0.92 for the magnetization and even 0.57 for the energy. To resolve 
this problem we define the functions 

hM( t )  = 
1 dM(t)  

M(t)  dt 

and 

gM(t) = 
--1 

hM(t + 2 )  -- hM(2) 

and analogously the pair hE(t) and ge (t) for the energy. According to the ansatz above 
we find 

,AM 
hM(t) - - -  + bM 

t + A M  

and 
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1 [(AM+2)2 +AM+2]  
gM(t) = ~ t 

These equations explain the intention for the definition of  h and g. By canceling out b 
we  are left with only two unknown coefficients in g. Although the transformations above 
are numerically subtle, plotting g versus i / t  results in a nice straight line (Figs. 7a and 
7b) .  Evaluating slope and offset yields the parameters A and ,4, 

AM = 0.29 + 0.03,  

AM = 4.5 -t- 0.6,  

AE = 2.26 + 0.08 

4 s  = 5.9 • 0.25 
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Furthermore, it proved to be numerical ly  advantageous to determine b not from b ( t )  

Cons ider ing  that w e  k n o w  M(t = 0)  = 1 and E(t = O) = - 2 ,  w e  better use 

' [  (' + 
b M ( t )  = - -  t I n \ M ( O ) j  + A M I n \  A M JJ 

and 

l [ln(E(t)-Eeq" ~ ( ' t +  A~ '~ ]  
be(t)  = - t \ E(-O) J + A e l n  \ - - - ~ E / J  
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instead. Figs. 8a and 8b show b(t) to be constant within a wide rangc of  t with only 

moderate fluctuations. 
Taking into consideration that the statistical fluctuations increase rapidly for t > 50, 

this ansatz fits very well the data of  the simulations from t = 0 on (Figs. 9a and 9b) .  
At about t = 50 the theoretical curve leaves the data points in Fig. 9a. This had to 
be expected because we  know from Fig. 3a that the magnetization data are strongly 

influenced by finite-size effects. 
As for power-law behavior the exponents AM and he can be expressed by the dy- 

(]_.) 
namical critical exponent z ,  i.e. AM = and h.e = z , we can determine z from 



274 R. Hackl/Physica A 212 (1994) 261-276 

0.9 

o.8 ,~, 

0.7 ',~ 

0.6 ~" 

0.5 

0 .4  

0.3 
0 10 

Magnetization Relaxat ion  

%% 
"%.1% 

"-.%, 

" "  - - + . I : ~ -++  + .  ÷ + + + + + + + .  + 

i i i i i i . . . . .  
20 30 40 50 60 70 80 

t 

6- 
,2 

0.1 

,it% 

%%. 

Energy Relaxat ion  

l),Ol %, 
%% 

'N..N. 

"%..% 
+.%. 

"%,,..,, 

u.O01 ~"'%'~ ~. 

( I , {KJO I  i I 1 I I I I 

10 20 30 40  50 60 70 80 
I 

Fig. 9. Magnetization decay (a), energy decay (b), and proposed theoretical curves. 

the magnetization and energy as 0.43 and 0.44, respectively. Although Tamayo's data 
agree excellently with ours, he got z = 0.25 + 0.05 assuming a pure power-law. This is 
reasoned by the influence of the e-b"t-factor. 

The proposed behavior is not so surprising if we remember that for the spin correlation 
in spin glasses the Kohlrausch decay, i.e. s ( t ) s ( O )  ,,~ e - b r ' / t  a, was already established, 
which is very similar except for the additional parameter x [ 10]. 

These results do not indicate any logarithmic singularity for the energy decay in the 
case of Swendsen-Wang dynamics in contrast to Wolff dynamics. This is in agreement 
with Siegert & Stauffer who did not find an ln(t)-factor in the energy relaxation of the 
2D and 3D Glauber dynamics either [l  1]. To reveal a t -a ln(t)-behavior one usually 
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plots the data divided by in t. 

Fig. 10 displays the energy data in the form (E(t) - E e q ) / I n ( t )  together with two 
fit curves, i.e. the ansatz from above divided by In t 

2 - X/~ ( t  + AE) -he  e -be ,  

zl~ a~- In t 

with the coefficients determined above and a pure fit ansatz (not divided by In t)  

0 .00396 e 2°b ( t  + ,~) -~  e - b '  

(A + 20)-~ 

with z~ = 2.54, A = 2.3 and b = 0.030. The second curve is normalized by the first factor 
in order to pass through the data point at t = 20. Although the two curves are based on 
slightly different parameter sets, they are hardly to distinguish in the range 5 < t < 80 
and both fit the data very nicely in this range. 

This picture (Fig. 10) teaches not to trust a single fit blindly. More important is an 
overall consistency in all kinds of  data presentation. This is not the case for the second 
curve, because b(t)  in Fig. I I, determined in an analoguos manner as for Fig. 6b, but 
with the parameters z~ and A and the energy data divided by In t, varies much stronger 
than in Fig. 6b although the y-range is twice as large as in Fig. 6b, and b(t)  does not at 
all look like a constant. In contrast, the power-times-exponential-ansatz for magnetization 
and energy (represented by the dashed lines) fits all the data displayed in Figs. 5a-9b 
reasonably well. Therefore, we favor our ansatz without a logarithm for describing the 
relaxation of  the energy over the ansatz including the theoretically expected logarithm. 
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Fig. 11. b(t) from (E( t )  - Eeq)/In(t)-data. 
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