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We investigate the effect of particle shape and interparticle friction on the stress–strain-relation using
the discrete element method (DEM) in two dimensions. Elongated particles show a significantly higher
shear strength than non-elongated particles. The relative maximum which is characteristic for
experimental stress–strain curves of granular materials is found only for elongated particles with finite
Coulomb friction, which indicates that the particle elongation is an important parameter in the statistical
physics of granular materials. An earlier simulation result from another group which showed a maximum
for non-elongated particles could be identified to be due to the formation of a shear band.
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1. Introduction

Experimentally, stress–strain curves for granular material
are determined via triaxial compression: The material is put
in a rubber membrane, which in x, y-direction is held under
constant pressure from an external water reservoir, while the
volume is compressed in z-direction under constant velocity,
see Fig. 1(a). The resulting characteristic stress strain curve
[Fig. 2(a)] has a linear regime, followed by the non-linear
plastic regime with the yield stress, the peak stress and the
failure regime [Fig. 2(b)]. There, the stress necessary to
deform the material is smaller than the peak stress, and the
density-maximum (minimum of the volume) is not reached
at the peak stress, but before, due to Reynolds dilatancy, see
Fig. 2(b). Original, our interest in the problem was caused
by the collaboration with an experimental group: We had
asked for the measurement of stress–strain diagrams of
monodisperse spherical and diamond-shaped plastic beads.
The characteristic maximum in the raw data stress–strain
diagram failed to develop, even for unreasonable large
strains, which often lead to tearing of the membrane and
created a mess in the laboratory.1) The investigation was
discontinued and we were asked to obtain further theoretical
insight via computer simulations ahead of any further
resumption of the experiments. In our simulations with the
discrete element method (DEM) in two dimensions,2) we
replaced the rubber membrane by a wall held under constant
pressure, see Fig. 1(b). We found that a relative maximum in
the stress–strain curve appears only for elongated particles,
but not for non-elongated and especially not for round
particles.2) We were unaware of simulations with compara-
ble size dispersion by Volk et al.3) where a relative
maximum in the stress–strain curve indeed appeared in a
similar setting with round particles, in contradiction of the
experimental results cited above. In this article, we want to
clear up this seeming contradiction, as in statistical physics,
the properties of microscopic constituents should be reflect-
ed in the macroscopic behavior of their agglomerate in a

unique fashion. The paper is organized as follows: In §2, we
outline the simulation method, in §3 up to §3.5 we
investigate the systematic dependence on the parameters,
and in §3.6 we analyze the difference between our result and
the one by Volk et al.3)

2. Simulation

We are using a DEM-code4) for two-dimensional poly-
gons (inscribed into ellipses of various half axis lengths)
with friction5) where particles have three degrees of free-
dom, two for the linear motion and one for the rotation.
When not mentioned otherwise, the coefficient for the
Coulomb friction between particles and walls is the same as
for the inter-particle friction to reduce the number of
parameters. The Young modulus of the particles and the
walls is 107 N/m where not mentioned otherwise; note that
in two dimensions, both the Young modulus and the stress
have the dimension of N/m. In the following sections,
depending on convenience, the stress will be either be given
in N/m or scaled by the external pressure �3 (for the ‘‘third’’,
the z-direction, though we have no ‘‘second’’ direction). In
our experience, this code gives results which are in good
qualitative agreement with the experiment if the plane of the
simulation is along a symmetry plane of the problem,4,6,7)

which should be the case for biaxial compression.2) For
the simulation of the biaxial compression, the system was
compressed under constant velocity along the y-axis
[Fig. 3(b)] with v ¼ 0:01 m/s, while it was held under
constant pressure along the x-axis at the left and right wall;
the dependence on the numerical value of external pressure
was studied systematically. We draw the strain "1 as the
relative displacement of the lid "1 ¼ �l=linit from the initial
system width linit. Because the system is discrete and
inhomogeneous anyway, so that particles can move relative
to each other in some parts of the system, while others are at
relative rest, we abstain from more elaborate definitions, as
there is not ‘‘differential’’ character of the strain. The stress
�1 was measured on the ground plate, as is customary in the
experiment.

The area of the particles varies by a factor of about 20, see�E-mail: salah@miyazaki.mce.uec.ac.jp
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Fig. 4, so the average radius varies by a factor of about
ffiffiffiffiffi

20
p
� 4. This distribution of diameters over less than one

order of magnitude is termed ‘‘poorly graded’’ in the field of
geotechnology. If the size distribution is extended to smaller
particles in the sub-millimeter range, cohesion effects come
into play. Though we have the necessary algorithms
available,8,9) we abstained from using smaller particles to
limit our investigation to systems with purely repulsive
interactions. Initially, the particles are dropped into the
system from above, then the lid is lowered. Where not
mentioned otherwise, the simulated system is initially
approximately square [Fig. 3(a)], as in the experiment.
While our simulation can be thought to go through the
symmetry axis of the three-dimensional cylindrical test
volume, Volk et al.3) went a step further and fixed one wall
as in Fig. 3(c), assuming that the left–right symmetry would
not be affected by a boundary near the symmetry axis. Both
kinematic situations2,3) are different from that of Garcı́a
et al.,10) where the system is purely stress-controlled. The
simulations have been performed with about 1400 particles

for systems with initial square cross section, while for the
rectangular cross sections about 700 particles were used.

3. Compression and Stress–Strain Relations

Stress–strain diagrams are not ‘‘universal’’, but vary
with the experimental conditions of the apparatus, e.g., the
external pressure. As can be seen in Fig. 5(a), different
curves are obtained both with a scaling in N/m [Fig. 5(a)] as
well as by a rescaling with the external pressure [Fig. 5(b)]
which is the reason why experiments on triaxial compres-
sions are seldom published, but the measurements are used
on a daily basis by geotechicians to determine the stability
of soils. Because the influence of the walls is crucial as an
external parameter, for these kind of systems finite size
effects do not have to be considered.

3.1 Fluctuations and averaging noisy curves
As is typical for granular materials, the stress fluctuations

in the raw data of the simulation are significant, see
Fig. 6(a). These fluctuations are inherent in the system and
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Fig. 2. Triaxial compression of granular materials: (a) strain (schematic) and (b) stress–strain-curve and density.
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Fig. 1. Schematic drawing for triaxial and biaxial compression: (a) experimental and (b) computational.
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are also found in comparable experiments in three dimen-
sions.1) Therefore, in the following, we give averages of
several different runs (eight, where not mentioned otherwise)
and their variance. Nevertheless, it may turn out for that
some experiments the average of curves with a relative

maximum is without maximum (because the maxima are at
different positions). The opposite can also happen: A single
sample with a significant maximum may cause the appear-
ance of a maximum in an average while all other curves are
flat. Therefore, in the following we will discuss both

0 0.5 1 1.5 2

x 10
 −4

0

20

40

60

80

100

120

140

Area of polygons

po
ly

go
ns

 c
ou

nt

(a)

0 1 2

x 10
−4

0

20

40

60

80

100

120

140

Area of polygons

po
ly

go
ns

 c
ou

nt

(b)

Fig. 4. Typical example of the size dispersion: Histogram of the area of poly-disperse heptagons (in m2). (a) Elongation 1.0. (b) Elongation 1.8.
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Fig. 3. Boundary conditions and geometries for the triaxial compression, as well as for the shear cell: (a) Our earlier work2. (b) Left boundary fixed.

(c) Volk et al. (d) Simple shear.
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averages, as well as curves for single runs. Another problem
is that the starting configurations for the same parameters
(friction, particle shape) may differ in their pore space. The
point "1 ¼ 0 might be welldefined as the position where the
lid contacts the first particles, but the scattering of the data
becomes significant [Fig. 6(a)], as the particle distribution in
the system may be inhomogeneous. To reduce the resulting
scattering, we aligned the curves along their slopes, see
Fig. 6(b), so the data are independent of the initial particle
distribution. In all following stress–strain diagrams, the
variance of the 6 to 8 samples are shaded as in Fig. 5. This
variance should be interpreted as a measure of the actual
physical scattering of the data, not as an error bar which
would vanish for an ‘‘infinite’’ amount of samples.

3.2 Dependence on the particle elongation
Figure 7(a) shows the stress–strain curves for particles

with elongation 1.8 and 1.0. The maximal stress and the
gradient in the linear regime increase with the particle
elongation. This means that aggregates of non elongated
particles have only half the stability of more of elongated
particles. The characteristic feature of stress–strain-curves of
granular materials, the maximum, is missing for non-
elongated particles, which means that the failure-behavior
of realistic granular materials like sand or gravel cannot
be modeled by round or non-elongated particles. Though
our simulations were performed only in two dimensions,
the result seems to hold also in three dimensions, as in
simulations of hard spheres and even van-der-Waals-poten-
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Fig. 5. Dependence of the average of stress–strain diagrams on the external pressure for non-elongated smooth particles (32 corners) and � ¼ 0:3. The

variance is indicated by shading. (a) Stress in N/m. (b) Stress scaled by �3.

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.5

1

1.5

2
x 10

5

strain ε
1

st
re

ss
 σ

1 [
N

/m
]

(a)

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.5

1

1.5

2
x 10

5

strain ε
1

st
re

ss
 σ

1 [
N

/m
]

(b)

Fig. 6. Eight runs of stress–strain-curves for particles with elongation 1.8 with 15 corners, � ¼ 0:6 and external pressure �3 ¼ 10000 N/m. (a) "1 ¼ 0

determined by the first contact between the lid and the particles. (b) The same data realigned along the slope.
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tials by Amin et al.11) again no maximum of the stress–strain
diagram was observed. Both for elongated and non-elon-
gated particles, the density minimum (with the initial
volume set to 1) occurs near the yield stress [Fig. 7(b)],
independent of the occurance of a maximum in the stress–
strain diagram. For strains up to "1 ¼ 2%, the reordering is
still very marked, as can be seen from the density change in
Fig. 7(b). When the regime of the yield-stress is approached,
the volume–strain-curve is much less noisy than the
corresponding stress–strain curve. The whole behavior of
the material strength of granular materials from linear
stress–strain over yield stress to failure happens in the rather
narrow window of less than 5% density difference. As a
note in the margin, for non-elongated, monodisperse
particles no clear minimum in the volume–strain curve
develops, but the volume decays monotonically up to "1 ¼
0:5 and then saturates.2)

3.3 Dependence on the friction coefficient
Figure 8(a) illustrates the effect of the Coulomb friction

coefficient � on smooth particles with vanishing elongation.
The maximal stress practically doubled for the increase
from � ¼ 0:0 to � ¼ 0:3, though the size dispersion and the
particle elongation were the same. For non-elongated
particles and friction coefficient � ¼ 0:3, the peak in the
stress which should be characteristic for granular media (in
contrast, e.g., to metals under uniaxial compression) is
hardly visible [Fig. 8(a), full line]. For the same size- and
shape-distribution at vanishing friction coefficient � ¼ 0:0
[Fig. 8(a), dotted line], the stress–strain curves do not
resemble those for granular materials: Not only is there no
saturation of the maximal stress, but due to the curvature, the
yield stress is practically unidentifiable. One has to conclude
that for dense systems, simulations of particles with
vanishing Coulomb friction do not really offer insights into
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Fig. 7. Influence of the the particle elongation (32 corners, � ¼ 0:6 and external pressure �3 ¼ 20000 N/m). (a) Stress–strain diagram. (b) Volume–strain
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stress–strain curves with Coulomb friction coefficient � ¼ 0:0 and 0.3. (b) Dependence of the maximum of the stress–strain curve on the Coulomb
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the behavior of realistic granular materials. The �-depen-
dence of the maximum of the stress–strain-curve �max can be
fitted to the functional form

�maxð�Þ ¼ a arctanðb�Þ þ c ð1Þ

which yields the coefficients a ¼ 2:9� 104, b ¼ 6:9, and
c ¼ 4:50� 104 [Fig. 8(b)], which means that for about � ¼
0:6; �max saturates. This is the reason why we performed
most of our simulation with � ¼ 0:6.

3.4 Dependence on the roughness of the particles
Whereas the influence of the elongation on the stress–

strain relation turned out to be considerable (§3.2), the effect
of the number of corners was not so crucial. Figure 9 shows
the stress–strain diagram for polygons with 7, 15, and 32
corners with different elongation, for the same average
length and size-distribution as in Fig. 5(a). The fluctuations
in the average of 6 to 8 samples are large enough so that the

dependence of the curves is not monotonous. Though the
‘‘rough’’ non-elongated particles with 7 (full line) and 15
(dotted line) corners show something like a maximum in the
strain-stress-relation, i.e., they are somehow realistic for
granular materials, for smooth non-elongated particles the
maximum is nearly non-existent. As the position of the
maximal stress and and its numerical value for non-
elongated particles are roughly independent of the number
of corners, one can conclude that there is not much
dependence on the macroscopic roughness. This is rather
surprising, because intuitively, one associates a higher
disposition to jam, i.e., shear resistivity with rougher
surfaces. Though non-elongated polygons have a ‘‘rougher’’
appearance than spheres, and polygons with fewer corners
look rougher than those with more corners, it should
nevertheless be noted that our ‘‘roughness’’ is not on a
microscopic scale, and the particles are still convex, and
cannot latch onto each other. While for non-elongated
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particles, the pressure maximum was clearer for rough than
for smooth particles [Fig. 9(a)], while in the case of
elongated particles, the pressure maximum is clearer for
smooth particles [Fig. 9(b)], where the fluctuations increase
with the roughness, and the maximum is ‘‘smeared out’’.
Ellipses show the same stress–strain behavior as smooth
polygons of the same elongation.2) Nevertheless, the

gradient in the linear regime is independent from the
number of corners, but depends on only the elongation.

3.5 Dependence on the Young Modulus
A somewhat disconcerting fact is that in contrast to other

macroscopic quantities like, e.g., the angle of repose,7) the
stress–strain relation (both the maximal stress and the
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Fig. 11. Typical particle configurations for various boundaries conditions. Identical colors indicate equal layers during the filling process. (a) Both walls

moving, initial configuration. (b) Both walls moving, final configuration. (c) Initial configuration with the left wall fixed. (d) Final configuration with

the left wall fixed, some shear bands emphasized by dashed lines. (e) ‘‘Half’’ a system with the left wall fixed, initial configuration. (f) ‘‘Half’’ a system

with the left wall fixed, final configuration.
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gradient of the linear regime) depends on the Young
modulus of the material, see Fig. 10, even though the
external pressure was at least two orders of magnitude lower
than the Young modulus. The gradient in the linear regime
increased linearly with the Young modulus within the
fluctuations [Fig. 10(b)], and we found no saturation up to
the highest Young modulus we used. This indicates that the
mobilization of slip (sliding of one particle beyond the other)
depends crucially on the hardness of the contacts.

3.6 Dependence on the boundaries
Finally, we want to investigate the effect of the

boundaries, which was the initial question for this inves-
tigation. In the experiment for three-axial compression, the
cross-section of the compression cell is usually square
[Fig. 3(a)] and increases during the compression [Fig.
11(b)]. Because Volk et al.3) (circles in Fig. 12) simulated
only ‘‘half a system’’ where one wall was fixed due to
symmetry consideration, their system was twice as high than
it was wide, similar to our simulations in Fig. 11(e). For this
system, Volk et al. (Fig. 12) got a clear maximum in the
stress–strain relation for a single curve with non-elongated
particles and a shear-band along the diagonal from upper
left to lower right. Matsushima12) got a similar maximum
(diamonds in Fig. 12) for the simulation of a simple shear
cell [see Fig. 3(d)]. For systems similar to those simulated
by Volk et al.3) with one wall fixed, we also get maxima
for single curves [Fig. 13(f)] and the corresponding shear
bands, as can be seen by the pattern in the layers
[Fig. 11(f)]. In our simulation, the flow of the particles
with one wall fixed [Figs. 11(d) and 11(f)] does not show
the same layering structure as that with two moving walls
[Fig. 11(b)]: The layer boundaries are tilted, because the
fixed wall inhibits the flow of particles, both for ‘‘wide’’
[Fig. 11(d)] and ‘‘narrow’’ systems [Fig. 11(f)]. We also
performed reference simulations where the friction coeffi-
cient of the fixed wall was set to 0: Within the fluctuations,
the stress–strain diagram and the configurations were
practically unchanged in comparison with finite friction.

This means that the impenetrability constraint set by the
wall has a stronger effect than its friction. We conclude that
the maximum in the stress–strain relation in Volk et al.3) is
not due to granular material properties, but due to a shear
band induced by the boundary conditions. For systems of
twice the width and one wall fixed [Figs. 3(b) and 11(c)],
the maximum in the stress strain relation for the single curve
becomes unidentifiable [Fig. 13(c)] though shear bands can
still be found [Fig. 11(d)]. For a system [Fig. 11(b)] with
both walls moving, which are the ‘‘truly’’ physical boundary
conditions, we get no maximum in the stress–strain relation,
neither ‘‘on average’’ [Fig. 13(a)], nor in the single runs
[Fig. 13(d)].

4. Conclusions

Agglomerates of non-elongated particles have only about
half the strength of those with elongated particles. Simu-
lations of non-elongated or round particles are therefore
unsuitable to predict the experimental behaviour of realistic
granular materials. For vanishing Coulomb friction between
particles, the obtainable stress–strain curves do not resemble
those of granular materials at all.

For finite Coulomb friction, the comparison with the
simulation by Matsushima12) suggests that the maximum in
the simulation by Volk et al.3) for non-elongated particles is
due to a shearband, which is induced by fixing the left wall:
The resulting peak stress is not characteristic for the material
itself, only for the chosen boundary condition. The flow of
the grains when one wall is fixed differs significantly from
the situation where two walls are moving, so it is not
possible to obtain the physical behavior of a ‘‘full’’ system
by inserting a wall at the ‘‘symmetry axis’’ and simulate the
remaining ‘‘half system’’. For realistic boundary conditions,
single stress–strain curves show clear maxima for the peak
stress only for elongated particles, even if those are only
‘‘pooly graded’’. For non-elongated particles, maxima in the
stress–strain curves appear only ‘‘on average’’ for ‘‘extreme-
ly large’’ external pressures. This means that for the
statistical physics of granular materials, the elongation is

0 0.02 0.04 0.06 0.08 0.1
0

1

2

3

4

5

6

7
St

re
ss

 σ
1/σ

3

 Strain ε
1

(a)

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

St
re

ss
 σ

1/m
ax

(σ
1)

 Strain ε
1

(b)

Fig. 12. Results for the shearing simulation of Matsushima (diamonds), the biaxial compression of Volk et al. (circles) and our biaxial compression for a

narrow system with fixed wall on one side (plus) for polydisperse polygons with elongation 1.0, 32 corners, � ¼ 0:6, and �3 ¼ 40000 N/m. (a) Scaled

by the external pressure. (b) Scaled by the peak stress.

J. Phys. Soc. Jpn., Vol. 75, No. 10 S. A. M. EL SHOURBAGY et al.

104602-8



0 0.02 0.04 0.06 0.08 0.1 0.12
0

1

2

3

4

5

6

strain ε
1

st
re

ss
 σ

1/σ
3

(a)

0 0.02 0.04 0.06 0.08 0.1 0.12
0

1

2

3

4

5

6

strain ε
1

st
re

ss
 σ

1/σ
3

(b)

0 0.02 0.04 0.06 0.08 0.1 0.12
0

2

4

6

8

10

12

strain ε
1

st
re

ss
 σ

1/σ
3

(c)

0 0.02 0.04 0.06 0.08 0.1 0.12
0

2

4

6

8

10

12

14

strain ε
1

st
re

ss
 σ

1/σ
3

(d)

0 0.02 0.04 0.06 0.08 0.1 0.12
0

1

2

3

4

5

6

strain ε
1

st
re

ss
 σ

1/σ
3

(e)

0 0.02 0.04 0.06 0.08 0.1 0.12
0

1

2

3

4

5

6

7

strain ε
1

st
re

ss
 σ

1/σ
3

(f)

Fig. 13. Stress–strain relation of polydisperse polygons with elongation 1.0, 32 corners, � ¼ 0:6, and external pressure �3 ¼ 40000 N/m for the boundary
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indeed a relevant microscopic particle parameter which
effects the properties of the macroscopic bulk crucially.
While the angle of repose depends not only on the particle
elongation, but also on the roughness of the particles,7) the
averages of the stress–strain diagram are hardly affected by
the particle roughness.
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