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Simulation of the pressure distribution under
a two-dimensional heap of polygonal particles
Hans-Georg Matuttis

Abstract Granular heaps in two dimensions are studied
using the molecular dynamics method with convex poly-
gons. The angle of repose shows a dependence on the size
dispersion of the particles. There is a pressure minimum
under the apex of the heap which depends strongly on the
way the heap is built. The results and the comparisons
with the experiments suggest that there is not such a thing
as a generic pressure distribution for granular heaps.

1
Introduction
Over the last years, the pressure distribution under sand
heaps has become a crucial issue in the research in static
granular materials. A concise overview over the field has
been given by Savage in [1] and in [2]. There are analyt-
ical [3–6] and semianalytical [7] results for the pressure
distribution under sand heaps with a fixed base which
show no minimum under the apex of the heap for non-
deformed bases. Simulations of soft particles show basi-
cally the analytical results with slightly rounded curves
[8, 9] even if the force laws are modified [10] and fric-
tional non-spherical particles [11] are used. Pre-stressing
the bottom of the pile may lead to pressure minima [9],
but cannot explain quantitatively the marked pressure dip
which has been found experimentally in [12] and [13].

This paper focuses on the effects of the (mesoscopic)
particles on the macroscopic properties of the heap. The
simulations presented in this paper use polygonal particles
instead of round particles, incorporate properties like fric-
tion and size polydispersity and take into account bound-
ary conditions like the flat base.

2
Experimental results on the pressure distribution
There are several, mostly experimental papers in the engi-
neering literature on the pressure under heaps and wedges
from the 1960’s to the beginning of the 1980’s. We follow
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the terminology of Savage [1], so that “cone” denotes a
round heap, whereas “wedge” denotes a lengthy, extended
heap of granular material (see Fig. 2). The papers acces-
sible to the author on granular wedges were [14, 15], the
papers on granular cones were [12] and [13]. We will dis-
cuss the relevance of two-dimensional simulations for the
interpretation of three-dimensional experiments later in
this paper.

The experimental results for wedges [14, 15] are con-
sistent and show no pressure dip, independent of how the
heap was built. The cones in the experimental literature
[12, 13] all exhibit a marked pressure dip, and were all
built in the wedge sequence.

To be consistent with the engineering literature, we
normalize the normal stresses in units of gρh, the product
of the height of the heap with the density of the material.

2.1
The geometry and history of the setup
There are different methods to build a heap of granular
matter. We adopt the terminology of ref. [14], where the
way to build a cone/wedge from a point source is called
“wedge sequence”, whereas a layer-wise construction is
termed “layered sequence”.

Fig. 1a denotes the layered sequence. The sketch for
the wedge sequence in ref. [14], see Fig. 1b is misleading,
because it does not scale with the shape of the growing
heap. The ideal situation which can be scaled is sketched
in Fig.1c, the realistic situation in 1d. The increasing size
of the avalanches for increasing system size leads to a mix-
ture of the strata in the foot of the heap and to asym-
metries in the strata. This was found as a result of the
simulations.

2.2
The experiment by Jotaki et al.
Jotaki et al. [12] measured the pressure distribution for
four different materials: Sea Sand, Rape Seed and two
kinds of sand named GB 708 and GB 733. The results
show a dip in the pressure distribution which is smallest
for rape seed, the material with the narrowest size distri-
bution (for the distributions, see Table 1). The pressure
is plotted in Fig. 3 for different sizes of the heap during
the construction. The dip is shallower compared with the
heap made from for the polydisperse sea sand (4). The
smallest heap (height 3.3 cm) shows no dip due to the size
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Fig. 1a–d. Sketch of the layered sequence (a) and the wedge
sequence (b–d). Lighter shade indicates partilces which where

poured on later in time

Fig. 2. Sketch of granular cones and granular wedges

Fig. 3. Pressure distribution for a heap of rape seed from
ref. [12]

of the pressure gauge. The size of the heaps ranges from
12 to 36 cm diameter, depending on the material.

The pressure gauge in the experiment of Jotaki et al.
[12] had a diameter of 2 cm, so that it had nearly the
sizeof the pressure dip for the small heaps. In the table
1, we give the minimal percentage of the pressure in the
middle of the dip, the angle of repose, the particle size
and the coefficient of internal friction. In the paper, the

Table 1. Parameters for the heaps in [12]

Material Pressure Angle of Particle Coeff. of
Dip [%] repose [deg] size [mm] int. friction

GB 708 81 22.5 0.3–0.7 0.41
GB 733 60 22.7 0.044–0.088 0.27
Sea sand 77 33.6 0.17–0.71 0.6
Rape seed 87 24.9 1.4 0.40
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Table 2. Verification of the pressure measurements in [13]. The largest derivations occur for heaps which are larger than the
maximum distance of the pressure gauges. The data are averaged from the left and right half of the original plot and interpolated
linearly for the integration

Values for fertilizer: Values for sand:

height (in cm) 20 30 40 50 55 20 30 40 50 55
massh (in kg) 20 67 159 310 413 32 108 257 501 667
masss (in kg) 20 65.2 154 309 397 33 111 255 436 606
massh/masss 1 1.03 1.03 1.01 1.04 0.97 0.97 1 1.16 1.1

graphs are plotted only for the right half of the heap. The
data are reproduced here because the original article is
not easily accessible.

A common property of the pressure distribution is,
that the tangent of the pressure is not flat in the middle of
the heap, and that the scaled pressure distribution changes
curvatures in the outer region for different heights. It is
not possible to collapse the graphs on top of each other
by scaling the normal stresses in units of gρh. From the
paper of Jotaki et al., we can not decide whether this is
a result of the large dimension of the used gauges, the
impact height, the size of the feeder or still another effect.

2.3
The experiments by Smid and Novosad
The experiment by Smid and Novosad [13] was performed
with sand and fertilizer. Regrettably, neither the grain size
nor the diameter of the strain gauge was given. The mea-
surements contain notable pressure asymmetries, whereas
Jotaki et al. [12] plotted only one half space of the ex-
periment. Nevertheless, assuming that the fertilizer used
is the commercially available fertilizer (d ≈ 3–5 mm), the
dimensions in units of the grain diameter are comparable
to the ones by Jotaki et al. [12].

Savage [1] computed the total weight from the given
stresses by curve-fitting and integrating the data and found
them to be 10% lower than the pile weight. He therefore
argued that the accuracy the experiment by Smid and
Novosad is questionable. No data or figures are given in

Fig. 4. Pressure distribution for a heap of sea sand from [12]

[1], so we present the result of our calculations here. If
one computes the masses of the heaps, first as given by
the pile-height, angle of repose and density (massh) and
second by integration of the stresses (masss), one obtains
the values in table 2 for the fertilizer data and the sand
data. Our data were obtained by integration of the lin-
early interpolated original data. It is not advisable to fit
the data with higher order polynomials, because this leads
easily to spurious negative pressures in the last measure-
ment interval at the foot of the pile, so that the total
computed mass may be grossly underestimated.

In table 2, there are large systematic deviations from
the computed to the measured total weight for the high
heaps of sand. They are nevertheless not very significant,

Fig. 5a,b. Construction method for polygons by inscribing
them to ellipses with axes a and b. Different starting points 1
for the first edge lead to a slight polydispersity of the shape,
but not of the area of the particles



86

Fig. 6. Graph for the pressure distribution in the 2-dimen-
sional heaps built in the wedge sequence

because the base diameter of the heaps is in that case
already larger than the largest distance of the pressure
gauges. That means, that the part of the heap with the
largest radius and therefore a large contribution to the
total weight does not show up in the measurement, so
that the strongest deviations are possibly due to lack of
data rather than to error-prone measurements. At least
the data for the fertilizer seem to be consistent. In this
respect, there is no reason to doubt that the pressure min-
imum in the experiments both by Jotaki et al. [12] and by
Smid et al. [13] show a pressure dip for a cone on a flat
base. There is no indication that the dip is the result of
the deformation of the base as suggested by Savage [1].

As the precise coefficients of friction and particle size
of the materials in [13] are not given, we will focus mainly
on the data of [12].

3
The simulation
The numerical algorithmic details of the molecular dy-
namics simulation are described in Appendix A.

3.1
Setting up the simulation
In the simulation, irregular heptagons were used, which
were inscribed to an ellipse with different axes. The ir-
regularity was introduced by changing the starting point
on the ellipse for the monodisperse particles, whereas the
length of the axis of the ellipses were changed for the poly-
disperse particles (see Fig. 5).

The two dimensional density was 5000 kg/m2, the mod-
ulus of elasticity was 1 · 107 N/m. We used a friction coef-
ficient of µ = 0.6 for the particle-particle and the particle-
wall friction and a time-step between dt = 10−5 s and
dt = 2.5 ·10−5 s depending on the minimal particle radius.

Particles were dropped from 40 cm height with 0.2 m/s
initial velocity. This large height was chosen to guarantee
almost constant impact velocity throughout the simula-
tion.

Fig. 7. Graph for the pressure distribution in the 2-dimen-
sional heap built in the layered sequence

3.2
Wedge sequence
To suppress the fluctuations, we averaged horizontally over
at least 12 neighboring particles along the bottom of the
heap and averaged the measurements over the left and
the right half of the system. The ground was flat in all
simulations.

In Fig. 6 representative data are shown. Additional
runs with different seeds gave equivalent results within the
fluctuations. The data are fitted to a fourth order poly-
nomial to guide the eyes. The size of the pressure dip is
comparable to the pressure dip in the experiments. The
number of particles per measurement interval was chosen
depending on the total system size and the fluctuations in
the system.

3.3
Layered sequence
The layered sequence was build with particles which were
dropped from the height of less than 1 particle diameter
onto the already present layers.

Settling effects in the strata of the system are strongly
visible in Fig. 8. The pressure data in Fig. 7 are again
fitted to a polynomial of fourth order to guide the eyes.
There are two striking features of the outcome: The angle
of repose in Table 4 is larger than for the wedge sequence
with the same size distribution. This means, that in two
dimensions the impact of the particles affects the angle of
repose considerably. Moreover, in contrast to the three-
dimensional experiment, the pressure distribution of the
layered sequence in Fig. 7 differs strongly from the pres-
sure under a wedge sequence in Fig. 6 with the same size
distribution. For the layered sequence, only a very small
dip is observed.
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Fig. 8a,b. Konfiguration for the monodisperse layered se-
quence (a) and the polydisperse wedge sequence (b). Different

shading indicates different age of the particles

4
Discussion of the simulation results and the
experiments

4.1
Wedges and cones

The small size or even absence of the dip for the layered
sequence is consistent with the experiments on wedges
[14, 15], which do not exhibit a dip.

The small magnitude or absence of the dip for mono-
disperse systems even in a wedge sequence is consistent
with the numerical model in [7], the calculation in [3] and
the simulations in [6, 8, 10].

4.2
Consequences of system size and dimensionality

When one compares the size of two-dimensional simula-
tions with three-dimensional measurements, one should
compare the linear dimensions of the systems in units of
particle diameters, not the total number of particles in a
heap.

In Jotaki et al. [12], the grain size given for rape seed
is 1.4 mm, with the base diameter of the largest heaps
being 120 mm to 320 mm, so there were about 100 to
140 particles in the base of the smallest systems. In [13],
the base length of the heap varies from 600 mm to 1700
mm for fertilizer, which has a grain size of about 3 to 5

mm, which also leads to a system size of 100 to several
hundred particles. The simulations use also 120 to 140
particles in horizontal direction, so that the base length
is comparable to the experimental heaps in units of the
particle diameter.

The data from the experiments, especially the ones by
Jotaki, are much smoother than the ones from the sim-
ulations, because the three-dimensional heaps are mea-
sured with two-dimensional pressure-gauges. Asymetries
can be still observed in the data in ref. [13]. In the two-
dimensional simulation, data can be collected only in one
dimension, so that the number of particles in the simula-
tion per measurement points is of the order of 10 instead
of 10 by 10, nearly one order of magnitude less than in
the experiments.

There is a fundamental difference in the geometry of
two and three dimensions which affects the force
propagation in granular materials. Two straight lines
always intersect in two dimensions, but not in three di-
mensions. Therefore, the intersection of strong “branches”
of a contact network may shift portions of material in
two-dimensional simulations, but not in three-dimensional
experiments.

In two-dimensional systems, the particles order more
easily on a regular grid than in three dimensions. Stronger
polydispersity destroys the ordering and thereby reduces
the fluctuations.
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Table 3. Parameters for the heaps built in a wedge sequence.
For increasing polydisperse material, the angle of repose in-
creases

Angle of Particle size Heap Particle
rep. [deg] a × b [mm] height [cm] tot./per bin

23 4 × 5 14 2600 / 14
24 4 × 4–5.5 17 4000 / 15
28 2–5.5 × 2–5.5 8 2000 / 12

Table 4. Parameters for the heap built in the layered sequence

Angle of Particle size Heap Particle
rep. [deg] a × b [mm] height [cm] tot./per bin

32 4 × 4–5.5 17 3400 / 10

4.3
Size dispersion
One of the most striking results of the experiments of Jo-
taki et al. [12] is, that for polydisperse Materials the pres-
sure under the apex of the heap is about 20% to 30%
smaller than at the maximum pressure. This occurs in
granular materials with very different properties, like in-
ternal friction and critical angle (see table 1). It should
also be noted, that the angles of repose range from 22.5◦
to 33.6◦, while the coefficients of internal friction ranges
from 0.27 to 0.61, but angle of repose and internal fric-
tion are not necessarily proportional, as can be seen from
table 1. Polydisperse material was also used in the mea-
suements of Smid et al. [13]. The only data from cones for
which the minimum pressure was less than 15 % smaller
than the maximum pressure was found for monodisperse
rape seed.

This is consistent with the simulations presented in
this paper, where the dip is more pronounced for poly-
disperse systems. The angle of repose increases with the
polydispersity of the system (see table 3). The size of the
pressure dip is comparable to the pressure dip in the ex-
periments. The angle of repose seems to increase with the
polydispersity of the system. The flat ground and the dif-
ferent size of the dip show that there was no effective bend-
ing due to the elasticity of the material which would ac-
count for a dip by an effective deformation of the ground.

5
Conclusion
The experiments on granular cones show the tendency
that the dip in the pressure distribution increases with
the amount of polydispersity of the granular material.
Wedges, on the contray, do not show a dip because they
are built layerwise in at least one direction.

The simulations presented in this paper reproduce the
experimental findings and confirm, that the pressure dis-
tribution in a heap is no static property, but depends
strongly on the history of the heap. There is an increase of
the dip for stronger polydisperse material in heaps build
in the wedge-sequence. The dip is practically absent for
heaps built in a layered sequence.

Therefore, one can say that there are no “generic”
sand heaps and no “generic” pressure distributions, but
the macroscopic properties of the sand heaps are stongly
affected by the grain properties of the heap. Continuum
models and their boundary conditions always have to be
specified for a specific kind of heap.

Monodisperse systems have shown the smallest dips in
different setups, so that one can assume that the regular
ordering in monodisperse systems inhibits arching mech-
anisms.

In the next step, the quantitative relation between the
particle shape, friction coefficient, angle of repose, the size
dispersion of the grains, the dropping height on the one
hand and the angle of repose and the pressure distribution
on the other hand has to be clarified more systematically.

I would like to thank Keiko Aoki for providing me with
the original paper of Jotaki et al. [12]. Useful discussions
with Stefan Luding, Tom Schanz and Alex Schinner are
gratefully acknowledged.

Appendix A
Modeling of polygonal granular materials
A contact force similar to the one in [16] for soft parti-
cle simulations with static friction [17] was implemented.
Both the non-spherical particle shape and the static fric-
tion are crucial to allow the realistic build-up of the heap
on a flat surface.

The basis of the molecular dynamics simulation are
Newton’s equations of motion for the translatory and ro-
tatory degrees of freedom. Though a special choice of the
force laws is outlined below, the details and the value
of the parameters can be modified without changing the
qualitative outcome of the simulations.

In the following, we outline the force law for the con-
tact and the damping normal to the direction of the con-
tacts and the tangential Coulomb friction force with real-
istic friction coefficients.

A.1
General considerations
The direction of the normal force is normal to the line
which connects the intersection points. This direction is
unique as long as there is no intersection between two
“spikes” (triangles with very small angle).

The force point Sij (see Fig. 9) is given as the mid-
dle of the intersection line of the two overlapping polygons.
All relative velocities (normal and tangential are also com-
puted with respect to this force point.

A.2
Fast overlap computation
To compute the overlap of two particles, it is necessary to
compute the intersection of their boundary. This intersec-
tion is computed in several stages to save CPU-Time.

1. We treat only particles with angles equal or larger 90◦.
2. The easiest way to exclude non-overlapping sides is the

comparison of the x- and y-coordinates. Sides which
cannot overlap are not treated in the following stages.
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Fig. 9. Sketch of the geometry of a particle-particle contact
for the polygonal simulation

3. To find out, whether two straight lines [AB] and [CD]
intersect, it is enough to check the orientation of the
triangles ABC, ABD, CDA and CDB. If ABC, ABD
and CDA, CDB have pairwise opposite orientation,
the lines intersect, see Fig. 10. The orientation is the
sign of the cross product of two 2-dimensional vectors
and can be computed in 3 FLOPs (FLOating Point
operations). Therefore, the intersection can be checked
with 12 FLOPs. In 50% of the cases, already the first
pair of triangles will have equal sign, to that on average
only 9 FLOPs are needed.

4. As we are only treating convex polygons with obtuse
angles, the intersection detection can be stopped if two
pairs of intersecting lines have been found.

5. For the computation of the intersection points, a 2 by 2
linear system of equations must be solved. Most of the
computation time for that task is used for the neces-
sary division, which takes about 50 times longer than a
multiplication or an addition on a modern super-scalar
workstation.

6. After the detection of the intersecting sides and their
intersection point, the intersection area can be com-
puted.

A.3
Normal forces
All the forces in this section are supposed to act in the
normal direction of the particle contacts.

A.3.1
Contact force
Two overlapping particles are imagined to deform in such
a way, that the overlap area is a measure of the deforma-
tion and thus is an estimate for the force between the two
particles. Due to the reduced dimensionality (2D instead
of 3D) one has to relate the particles to a certain length,
which can be imagined as the length of rods in 3 dimen-
sions, which form a 2-dimensional physical system.
The contact force Fc,⊥ is therefore proportional to

– the area A of the overlap between the two particles in
units of [m2].

Fig. 10. Oriented triangles for intersection computation of
straight lines

– the “Young’s modulus” Y : The harder the particles
are, the larger is the force of the particle if the overlap
increases. Young’s Modulus in 3 Dimensions has the
unit [N/m2], in 2D one has therefore [N/m].

– the inverse of the characteristic length l, which de-
pends on the distance between the centers of mass and
the force point l1 and l2

1
l

=
l1 + l2
l1 · l2

This models the fact that the larger the particles are,
the easier is the compression of a given area.

The resulting forcelaw is then Fc,⊥ = Y · A/l.

A.3.2
Damping force
The damping force Fc,⊥ leads to energy dissipation in nor-
mal direction. It is modeled like the damping in the har-
monic oscillator and is proprotional to

– the square-root of the reduced mass of the two-particle
system (analogous to the harmonic oscillator),

– the square-root of Young’s modulus Y (analogous to
the harmonic oscillator),

– to the change of the contact area per time dA/dt,
– to the damping constant γ⊥, which gives the strength

of the damping,
– to the inverse of the characteristic length l.

Comment It is also possible to compute the change of
the contact area as the product of the normal velocity and
the contact length. Due to the fact that the velocity in the
numerical integration is the numerical derivative, which is
stronger contaminated by fluctuations, we dit not use the
velocity in the expression for the damping.
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The damping term in normal direction is then

Fd,⊥ =

{
Y · dA

dt /l, for approach

max
(
Y · dA

dt /l,−Fc,⊥
)

for separation

Comment In the harmonic oscillator, the harmonic mo-
tion of the particle does not allow arbitrarily high veloc-
ities with zero amplitude, so that the potential is always
smooth. In the modeling of grain contacts, there is a dis-
continuous force jump if the particle impacts with very
high velocity. That may lead to the unphysical (in com-
parison to the un-damped oscillator) situation that the
force on the particle is not largest when the overlap is
largest, but when the relative velocities are largest.

For separating particles, one has to implement that
the (attractive) damping cannot become larger than the
(repulsive) contact force. This would lead to unphysical
oscillations of the separating particles. A similar reasoning
can be found in [18] for contact-mechanics simulations.

A.4
Tangential force
The tangential force acts as friction force normal to the
Damping force in the same force point and perpendicu-
lar to the contact. It is again modeled like the harmonic
oscillator. It is incremented proportional to
– the change in position since the previous contact ∆x =

vt · ∆t,
– the tangential Young modulus Yt = Y · 2/7, which

yields Coulomb friction for 2-particle contacts of round
particles in a diluted granular system. The important
aspect is that the normal and the tangential force are
acting on the same time scale.

The tangential force is truncated at F⊥ · µ with the coef-
ficient of friction µ with F⊥ = Fd,⊥ + Fc,⊥. Currently we
do not discriminate between static and dynamic friction.
The above system corresponds to a harmonic oscillator as
long as no cut-off occurs. It is also necessary to include a
damping in tangential direction to avoid undamped tan-
gential oscillations. The tangential force is therefore pro-
portional to
– the relative tangential velocity vt,
– to the square root of the tangential Young’s modu-

lus Yt = Y ∗ 2/7. Yt is chosen in such a way that for
a diluted granular system the behavior for tangential
collisions with Coulomb friction is recovered [19].

– the square root of the tangential mass (where the effect
of the momenta of inertia I1, I2 have to be added to
the reduced mass):

meff,‖ =
1

1/m1 + 1/m2 + r2
1/I1 + r2

1/I2

– After adding the tangential damping, the resulting force
must again be checked weather it is not larger than the
Coulomb friction.

So the tangential force is

Fd,‖(t) = Fd,‖(t − ∆t) + Yt · vt · ∆t +
√

meff,‖ · Ytvt

if the normal force Fd,‖(t) ≤ µ · F⊥, else it is µ · F⊥

A.5
Torques
The torques M are computed directly as the vector prod-
uct of the forces F and the vectors r between center of
mass and force points with

M = r × F.

The torques are then inserted into the equation of motion
for the momenta of inertia

M = Iω̇

A.6
Time Integration
We use the Gear predictor corrector formula of 5th or-
der. Allen and Tildesly [20] recommend the application
of only one single corrector step for the computer sim-
ulation of liquids, where smooth inter-particle potentials
like the Lennard-Jones potential are used. As our inter-
particle forces are not smooth, we use two predictor steps
for a more stable treatment of the discontinuous contact
forces. The higher order Gear predictor corrector schemes
also do not suffer from the strong local fluctuations which
are introduced by Verlet-like integration schemes. For a
predictor-corrector-scheme with two corrector iterations,
the typical time step for γn = .5 which can be used is
about

dt = 0.1
√

m/Y · π

where m is the mass of the lightest particle and Y is the
Young modulus. The high order of the integration scheme
allows to choose the contact time in such a way that about
3 time steps during the approach and 3 time steps during
the separation If there are less time steps the simulation
becomes unstable.

Sometimes researchers find that they have to specify
time-steps which are a factor of a hundred smaller than
the theoretical contact times for the particles to prevent
the simulation from becoming unstable. This results if no
cutoff is used for the damping force, so that the resulting
oscillations have a much smaller time scale than the actual
collision.

A.7
Performance
The algorithm is written to simulate densely packed gran-
ular systems. For moderately polydisperse systems, the re-
quired CPU-time is proportional to the particle number.
Walls are simulated as large particles, but are treated with
a different neighborhood routine, so that the bottom of the
system is simulated as one single particle. This excludes
artefacts due to the joining of small particles like increases
roughness due to additional normal force components.

One particle update costs about 90 µs on a Sparc Ultra
(140 MHz) or a AIX PowerPC (120 MHz). As the corrector
is applied twice, the force calculation has also to be applied
twice. The time for the overlap computation lies between
25 % (IBM XLF-Compiler) and 45 % (SUN F90 Compiler)
of the total execution time.
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