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Abstract. Recent results in the investigation of the quantum Monte Carlo method
for the Hubbard model using auxiliary fields revealed that the minus-sign problem
for the fermionic case may be much more benign than conclusions in earlier studies
indicated.

25.1 Introduction

In quantum Monte Carlo simulations, the statistical weight P often becomes
negative. The sampling of an observable A is then carried out by using |P)|
as the statistical weight and by reweighting the measurements with the sign
S of the corresponding configuration
(AS)
A =5z (25.1)
(S)
Generally it is believed that simple averages (A) ignoring the sign are dif-
ferent from [A]. If the denominator (S) approaches zero, the computation of
[A] becomes difficult or impossible, a situation which is referred to as the

“minus sign problem”. From here on, we will limit ourselves to the Hubbard
Hamiltonian

H=T+0U (25.2)

= —1; Z C;;.Cja + h.c. + UZniTnu . (25.3)
(4,3),0 i

where ¢} (c;,) creates (annihilates) a fermion with spin o on site i, hopping

parameter and the strength of the on-site Coulomb-repulsion are denoted by ¢

and U, respectively. The standard procedure in quantum Monte Carlo starts
from decomposing the operator exponentials e.g. in second order as

erH = ¢7T/2e0grT/2 | o(7?). (25.4)

This problem has still the dimensionality of the original Hamiltonian. For a
many particle problem, the memory requirement is in general too large for
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conventional computers. The dimensionality usually increases exponentially
with the particle- and system-size, which is the reason why numerical diago-
nalizations are limited to comparatively small systems. Due to “decoupling”
of the parts of the Hamiltonian in (25.4), it is possible to simulate the system
as single-particle systems and thereby to reduce the dimensionality consider-
ably. The insertion of complete orthogonal states between the “slices” e™T/ X
eV leads to the so called world-line method, for which the minus sign problem
is well established. We will focus here on the auxiliary field method, where
the operator product is left intact, and the nature of the minus-sign problem
is less clear.

In the auxiliary field method, the interaction is decoupled using usually
the discrete Hubbard-Stratonovich (HS) transformation [1]

e T = £ Z ePAs(nt—ny)—3(mr+ny) A = tanh™! tanh(ﬂ)
s=%1 4
(25.5)

for each lattice site, so that Slater-determinants can be used.

25.2 Projector Quantum Monte Carlo

The projector method uses the exponential of the Hamiltonian to filter out the
ground state from a trial wave function |T'). This can be seen when the trial
wave function is written in the energy representation with the basis functions
|n), larger n denoting higher energies and n = 0 denoting the ground state:

e PH|T) = e PH Y “(n|T) - |n) (25.6)

= e PP(0|T) - [0) +e7PP0 § " e PE=E)(mIT) . In).  (25.7)
n>0 &

For the simulation, the operator exponential is then decomposed with the
methods mentioned in the previous subsection. Denoting a Trotter slice with
the HS-decoupled interaction will be denoted as

B /(8= e 83V BlagtR/2 (25.8)

In the PQMC, the wave functions (1| and |¢) for m Trotter-slices By, are
computed from the trial function |0) respectively for each spin-direction o as

6e)= T Bulo) and(wol=( I B,UIO))T. (25.9)
i=1,m/2 i=m/2+1,m

For n electrons and [ sites, |0), |#) and |¢) are | x  matrices. The statistical
weight P, for this configuration is the determinant

Py = det(ths|da) . (25.10)
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Fig. 25.1. Plot of energy versus the square of the Trotter step 7. Symbols are: Our
result for multi site updates, sign taken into account (+), sign ignored (), both
with errorbars, fit to our data with sign ignored (dashed line), value from numerical
diagonalization (circle) and value for sign ignored from Imada et al. [2] (triangle)

As transition-probability Pry, either P;P| can be used or its “heat-bath”
equivalent (P4 P))/(P;Py + 1). The Greens function G, is

Go = |90)T (Yo|de)) ™" (| . (25.11)

In [2], the Hubbard Model for U = 8 and 4 electrons on 3 x 2 sites was ex-
amined using single site updates. Significant deviations from diagonalization
results were found for the energy value if the Trotter timestep 7 was extrap-
olated to 0. In our recalculation using single-site and multiple-site updates,
the deviations were practically insignificant (see Fig.25.1). As can be seen,
the statistics of the data taking the sign into account are much noisier then
the one ignoring the sign.

It turned out that the main difference in the codes of Imada et al. was
probably the use of different matrix inversion types, a inner product based
one in the program of Imada et al. [3], and a Linpack-type [4] one in our
case, where the kernel is of the form y(i) = a*z(i) + y(i). For the latter one,
pivoting techniques seem to be more effective. As ignoring the sign lead to
correct results within the statistical fluctuations, we investigated the corre-
lation between the sign and the energies. We computed the correlation as

()~ 4] _ Vas
@ TAE)

(25.12)

where V4s denotes the correlation between A and S, that is Vg = (AS) —
(A)(S). For (25.12) to be valid, (S) may not vanish. Extrapolating from
different values of 7, we found that (S) approached 0.0775 for 7 — 0. Within
the errorbars, the correlation between sign and energy virtually vanish, see
Fig. 25.2.
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Fig. 25.2. Correlation between the average sign (S) and the energy (E), given as
((ES) — (E)(S)) / ((E)(S)), versus the Trotter-parameter 7 for a system with 4
electrons and 3 x 2 sites at 3 = 8. The line is drawn to guide the eye
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Fig. 25.3. Temperature dependence of the energy for a system of 3 x 2 sites with
a filling corresponding to 4 electrons

25.3 Finite Temperature Quantum Monte Carlo

For the investigation of finite temperature properties, we use a grand canoni-
cal method after [5]. We compare simulational results from the grancanonical
method with data from numerical diagonalization. for 3 x 2 sites ad U = 4
and (on average) 4 electrons. Though the system is small, the canonical and
grand canonical data are in good agreement, and the sign does not seem to
affect the measurement, see Fig.25.3. For stronger interaction (U = 8), the
behavior is different, but still unaffected by the sign. Both for U = 8 and
U = 4, for large § the energy approaches the value for the ground state
energy. Furthermore, we compared the d,, equal time superconducting cor-
relation function, which is quite sensitive to statistics and parameters, in a
8 x 8 system with 50 electrons and U = 2, t = 1 and a next nearest neigh-
bor hopping term ¢’ = —0.22 and time slice 7 = 1/8. The groundstate data
take the sign into account (with projection parameter g = 8,), for the grand
canonical data (inverse temperature $ = 15) the sign is ignored. The data
show good agreement between the different methods.
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Fig. 25.4. The d., superconducting correlation function for a 8 x 8 system in
the groundstate (circles) and for a grand canonical ensemble at finite temperature
T = 1/15 (+) is shown [6]

25.4 Summary and Conclusions

We have shown cases where the minus sign can be ignored in the sampling
process for the auxiliary field Monte Carlo Methods even in cases where
previous publications had proclaimed marked differences. We have limited our
investigation to small systems because only in these cases reliable reference
data exists. Larger system sizes were consistent with the findings presented
here [8].

For implementations where observables taking the sign into account turn
out more accurately than if the sign is ignored, we suspect that the quantum
Monte Carlo sampling procedure in (25.1) seems to provide a certain degree
of error compensation. Due to the multi-linear nature of the determinant,
numerically problematic values will be indefinite in sign and are counted
as “positive” or “negative” with equal probability, so that correct estimates
can be obtained for observable computations using observables of the form
(chejr) and (cficjy). We are not sure whether this effect is also present in
larger systems, and exists also for observables of the form (cj%cnc,tlcl 1) like
superconducting correlation functions.

Within our investigation, for time independent observables we have not
yet detected a case where the sign of the determinant has to be taken into
account. We are currently investigating the influence of the sign on the com-
putation of time-dependent greens functions, especially the example given
in [7]. No clear picture has yet evolved, but it seems that numerical details
of the stabilization process seem to have larger effect than the ignoring or
taking into account the sign.
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