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Abstract. We investigate compaction due to tapping in two-dimensional granular columns computationally with the discrete
element method (DEM) in two dimensions. We compare the compaction in dry granulates with the compaction of the system
immersed in a viscous fluid. We use polygons as particle shapes, so that the resulting pore-space can be triangulated for a
finite element method (FEM) for an incompressible fluid. We investigate the competition between a slowing-down of the
dynamics due to the viscous forces of the fluid and the improved transmission of the tapping pulses through the fluid in the
pore space. For the system immersed in water, the propagation of the shocks due to the tapping of the floor is faster than in
the corresponding dry system. The center of mass of a nearly square system drops faster for the dry case than for immersed
particles. For a system twice as high and half as wide, for the same vibration, for the dry system, the center of mass rises,
while for the immersed particles there is hardly any change.
Keywords: Nonlinear acoustical and dynamical systems, granular flow classical mechanics of discrete systems, complex fluids
PACS: 43.25.Ts, 45.70.-n, 45.70.Mg, 47.57.Gc

1. INTRODUCTION

The relaxation of granular materials is a paradigm of
“slow” dynamics: The resulting compaction is logarith-
mically slow [1, 2, 3]. For realistic granular materials
(i.e. those with solid friction), the questions of what is
an equilibrium state is not easily settled: While conven-
tionally, the equilibrium state is considered to be the state
which is obtained “long enough”, it is not clear what
“long enough” means in the present of static (Coulomb)
friction, which acts effectively as a constraint of motion,
so that no relaxation takes place at all in this static equi-
librium. If a granular material which is initially in a static
state is excited, depending on the excitation (shaking, vi-
bration, pneumatic driving . . . ), the resulting density may
be higher or lower than that of the static state before the
excitation. We want to investigate computationally the
compaction under tapping (acceleration of boundaries)
of granular columns so that between the excitations, the
system can return again to a static state for both the case
of dry material, as well as for particles fully immersed
under a viscous Newtonian fluid.

1.1. Previous research on compaction in
tapped granular material

Since the investigation by Knight et al. [1, 2, 3] com-
paction in granular matter has been established to be
logarithmically slow. Experimentally, tapping has been
investigated predominantly for round glass beads [4, 5,

6, 7], but more recently also more irregularly shaped
[8] and even needle-shaped particles [9] particles have
been used in the investigation. Because of the logarith-
mically slow dynamics, in computational investigations
rule-based models [9, 10, 11] have been preferred to
cover large time scales, but recently, also discrete ele-
ment simulations have been used [12]. Due to the slow-
ness of the dynamics, analytical investigations have been
undertaken [13] despite the complexity of the system.
One point which should not be forgotten about granular
compaction with tapping is that the long-time limit is not
necessarily the densest packing available for a given kind
of material: For some materials, higher packings can be
obtained by first evacuating the vessel with the granular
filling and then letting the air stream in [14].

1.2. Research outline

We limit ourselves to the computational investigation
of two-dimensional granular systems with and without
liquid. We are interested in the change in the short time
dynamics when a very viscous fluid is introduced into
the pore space. While conventionally granular materials
are simulated in the discrete element method with round
shapes, we use a polygonal simulation to take into ac-
count the fact that in realistic granular particles, reorder-
ing by rotation in the bulk is hardly possible.

We compare the relaxation behavior under tapping for
the dry granular material with that for particles immersed
in a relatively viscous fluid (µf = 1[Pa · s], thousand times
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FIGURE 1. Microscopic simulation of fluid flow around
particles in a shadow.

the viscosity of water) to see how the character of the
relaxation changes due to the presence of fluid. The
simulation is “microscopic”, i.e. the boundaries of the
particles are the boundaries for the fluid (see Figure 1),
the fluid can move only in this pore space, in contrast to
“macroscopic” simulations of fluid with particles where
the fluid can go “through” the particles [15]. Because
there are hardly any codes for microscopic simulations,
and the numerical solution of the flow field is rather
more costly than the DEM-simulation, we limit ourselves
to the initial time of the compaction. Nevertheless, we
can establish long-term limits by reducing or altogether
switching off the static friction, see sec. 6.1.

While the viscous fluid can be imagined to increase
the damping in the relaxation process, on the other hand
it can be expected to improve the transmission of the
excitation through the granular column, when particle do
not push only neighboring particles, but also buoyancy
of the surrounding fluid to transmit the tapping impulse:
The particle-particle interstices themselves are relatively
“weak links”, so that the sound velocity on the surface
of a polygonal granular assembly is of the order of 10%
of the sound velocity of the corresponding continuum
material [16] c =

p
Y/r given by its Young modulus Y

and density r . The question is which element will gain
the upper hand: The additional damping, the lubrication
by the fluid or the enhanced transmission.

2. DISCRETE ELEMENT METHOD

In the discrete element method (DEM), the granular ag-
gregate is modeled by individual grains. In our method,
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FIGURE 2. Sketch of the geometry of a particle-particle
contact for the polygonal simulation.

polygonal particles are represented as rigid polygons
(no macroscopic deformation), while the force between
neighboring particles is proportional to their area overlap
(“hard particle, soft contact”) [17]. When two particles
are in contact (see Figure 2), we compute the elastic con-
tact force between them proportional to the overlap area
A of the undeformed particles as

F

c,? = Y · A

l

, (1)

where Y is the Young’s modulus in two dimensions (i.e.
with units N/m). The characteristic length l is defined
as l1 · l2/(l1 + l2), with l1 and l2 as the lengths from the
center of mass of the particles to the force point (“hard
particle, soft contact”). The characteristic length l serves
to adapt the sound velocity in a space filling packing to
the sound velocity of the continuum material [16]. We
define the damping term in normal direction as

F

d,? = g
p

Y mred
1
l

dA

dt

, (2)

where g is the damping constant and mred =m1m2/(m1+
m2) is the reduced mass of the contacting particles. Addi-
tionally, an if-condition prevents that the damping force
in Eq. (2) for separation can overcompensate the elastic
repulsive force from Eq. (1) to eliminate unphysical spu-
rious attractive forces [16] which would act as a source
of noise. To model static Coulomb friction, the tangential
force is defined incrementally [18] as

F

d,k(t) = F

d,k(t �Dt)+Y

t

· v
t

·Dt +

q
meff,k ·Yt

v

t

(3)

if F

d,k(t) µ ·F?, else it is µ ·F? where F? =F

d,?+F

c,?
is the tangential force. In Eq. 3, meff,k is the reduced
tangential mass which can be written as

meff,k =
1

1/m1 +1/m2 + l

2
1/I1 + l

2
2/I2

, (4)

where I1 and I2 are the momenta of inertia of the parti-
cles. The tangential Young’s modulus is defined as Y

t

=



Y · 2/7. If not indicated otherwise, we use a friction co-
efficient of µ = 0.3 (both for the static and dynamic fric-
tion, both between particles as well as between particles
and walls) for the dry system as well as for the system of
immersed particles, to make clear up in the differences
in the dynamics which comes from the introduction of
the fluid. For many particles materials, the friction co-
efficient of the fluid-immersed particles would probably
be lower. We neglect inter-particle cohesion, though it
can be modeled quite easily in our DEM-approach [19].
These equations of motion for the particle simulation
are solved using the second order backward difference
formula (BDF2, Gear predictor-corrector of 2nd-order
[20]).

The grains in the two-dimensional system can be
imagined as “rods” in three dimensions. Our units are
chosen so that the particles are taken to be rods of
one meter length. The density of the granular particles
is 5000[kg/m2

] (respective to a depth of 1[m]), while
the bulk density (including the pore space) varies be-
tween 4195[kg/m3

] and 4280[kg/m3
], e.g. the poros-

ity of around 0.39 (including particle shadows), 0.16
(without the particle shadows). The Young’s modulus
is 106

[N/m] (again, respective to a depth of 1[m]), the
damping constant is 1.5. The Young’s modulus may look
small compared to the ones for three dimensional mate-
rials like stone, which are of the order of several hundred
gigapascal. Nevertheless, in our simulation, smooth sides
are in contact, while in real materials, it would be sur-
face asperities which would lead to the contacts, which
are much easier to deform.

3. FINITE ELEMENT METHOD

In granular materials without additional compression, the
sound velocity is considerably lower than for the respec-
tive continuum (below 10% of the continuum sound ve-
locity in two dimensions, below 1% in three) [16]. As
the sound propagation through the granular matrix is rel-
atively slow, we work with an incompressible fluid. We
choose a formulation where the pressure are computed
as Lagrange-parameters in each timestep. The resulting
differential algebraic equation is solved most efficiently
via an implicit integrator, so we have resorted to the for-
mulation of the Navier-Stokes equation from Gresho et
al. [21] as
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as second order backward difference formula (BDF2),
as the particle trajectories. with the mass matrix M,the

viscous matrix K, the non-linear terms N, the exter-
nal forces f , the flow velocities u and the pressures
P. C is the matrix for the incompressibility constraint,
— ·~u = 0. We solve Eq. (5) via Newton-Raphson itera-
tion [22]. The inversion of the Jacobian in our MATLAB-
implementation, we use the backslash-solver, which calls
UMFPACK-routines. Krylov-solvers turned out to be in-
efficient, as the velocities and the pressures in Eq. (5)
have different scaling.

The packing of polygons creates a void space which
can be tessellated exactly with triangles. The discretiza-
tion of choice for such irregular domains is via the Fi-
nite Element method (FEM) for irregular meshes. The
discretization is via P2P1 triangular elements (Taylor-
Hood elements), with pressures on the corners of the
triangular elements [22]. Accordingly, the pressures are
also defined of the boundary of the fluid domain, which
is important for the computation of the interaction be-
tween particles and fluids. The triangulation of the pore
space is obtained as constraint Delaunay triangulation
(i.e. the constraint is that the mesh may not extend into
the particle) with additional relaxation ob avoid degen-
erated triangles [23]. We work with the density of water
(1000[kg/m3

]) and a viscosity of 1[Pa · s].

FIGURE 3. Left: Fluid space (white), shadow by which the
particles interact (light gray) and core (dark gray) which forms
the boundary of the fluid flow. Right: Three-dimensional ar-
rangement of grains which leads to flow between the particles
along the fat lines which is supposed to be mimicked by the
shadow on the left.

4. COUPLING OF DEM AND FEM

To model the pore-space in such a way that blocking of
pore regions is avoided as in the realistic three dimen-
sional dynamics, the particles consist of a core, whose
boundary is a boundary of the fluid, and a “shadow”
which is used to for the computation of the interaction
between the granular particles. Inside this shadow, the
fluid flow is computed as for the empty space to obtain
a pore space is connected, so that no sub-volumes are
closed of, as would be the case for three dimensional par-
ticles, see Figure 3. The size ratio between the the whole
particle and the core is about 1 : 0.72.



Boundary conditions for the flow on the surface of the
particle core are no-slip conditions: Interaction between
the flow and the particles takes place via the forces of the
particles on the surface, namely, the form drag
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Pdl, (6)

due to the pressure computed according to equation (5)
as Lagrange parameters, and friction drag (proportional
to the gradient of the flow tangential to the particle
surfaces)

F

V

x

= µf

Z

G
2n

x

dudx+n

y

(dudy+dvdx)dl, (7)
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G
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x

(dudy+dvdx)dl, (8)

where G is the boundary of the particle’s interface and µf
is the dynamic viscosity of the fluid.
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FIGURE 4. Initialization of the “wide” system with 195
(left) and system with the particles settled down which is used
as initial configuration.

5. SYSTEM SETUP

In the following, we treat two different geometries one
nearly square (“wide”) with 195 particles, one which is
about four times as high as it is wider (“narrow system”)
with 190 particles.

5.1. Preparation of the initial system

The particle shape is constructed by inscribing regu-
lar polygons into ellipses (Semi-major axis of 1.2, semi-
minor axis of 1) and randomize the shapes and sizes by
adding random numbers of ±10% of the radius for the
corners. Only convex particles are used. The corner num-
bers of the particles range between 5 and 9. We construct
the initial configuration of the granular packing by drop-
ping the particles in the dry DEM-simulation from ini-
tial positions with the center on a regular grid (Figure 4,
left) and wait until the particles have settled down and
the vibrations in the agglomerate are damped out (Fig-
ure 4, right). In the initial grid (Figure 4, left), a stripe
of particles is left near the left and right boundary to al-
low the development of stronger disorder than what is
possible if the positions are occupied regularly. We start
with the same initial configuration (position, orientation,
friction value) for the dry and the immersed system. To
offset the effect of buoyancy, we simulated the dry sys-
tem with density 5000[kg/m3

], and the immersed sys-
tem with density 6000[kg/m3

], inside a fluid with density
1000[kg/m3

].

6. TAPPING

For modeling the tapping, i.e. conferring an impulse to
the particle system via the boundaries, we have several
possibilities. The tapping can be implemented as a dis-
placement of the boundaries, or a specification of a ve-
locity of the boundary (without displacing the boundary
at all) or as a combination of both. Because sudden dis-
placements of a neighboring particle can lead to very
large shocks, we opted for keeping the wall position con-
stant and change only the (dummy) velocity on the walls
surface. Next we have to decide which boundaries we
want to manipulate: We can tap either only a part of the
boundaries, i.e. the floor, or all the boundaries. In physi-
cal systems, tapping the floor of a cylindrical vessel will
lead to a propagation of the shock also along the cylin-
ders walls: To transmit momentum only through tapping
of the bottom, it would have to be unconnected to the
cylinder’s walls. We decided to investigate both possibil-
ities: Tapping of the bottom was used so that the upward
propagation of the shock wave through the system could
be measured (sec. 7.1), and the differences in shock prop-
agation with and without fluid could be identified. Tap-
ping of the whole boundary (sec. 7.2, 7.3) was used in
the hope of enforce a more physical macroscopic rear-
rangements of the granular matrix.

The duration of the pulse is 0.001[s], the time between
the beginning of one pulse and the beginning of the next
is 0.4[s], see Figure 7. Together with the magnitude of
the pulse, we rather quantify the response, i.e. we give
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FIGURE 5. Position of the center of mass for reducing the
coefficient of friction µ .
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FIGURE 6. “Final” potential energy of the wide system with
different coefficients of friction µ in double logarithmic plots
(�) and the fitting (solid line).

time evolution of the acceleration for a particle in the
lowest layer. The ratio between average acceleration by
the pulse and gravitational acceleration (9.81[m/s2

]) was
Ḡ = 17.3, with a maximal value of Gmax = 64.4. While
for the system in fluid, the ratio was Ḡ = 18.8, with a
maximal value of Gmax = 32.7.
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FIGURE 7. Time evolution of the acceleration of a particle
in the lowest layer of the dry simulation (black) and wet sim-
ulation (gray) as well as intensity of the original pulse (dashed
line).

6.1. Evolution of the center of mass

We monitor the evolution of the center of mass over
time as the parameter of the relaxation, rather than the
density: As our system does not have many particles,
the upper layer is relatively large, compared to the total
system, and it is difficult to define the upper boundary
of the system and therefore the density with respect
to the upper layer. To avoid this ambiguity, and to be
able to compare systems of different dimensions, we use
the position of the center of mass scaled to 1 as the
parameter.

Vibration of particles in sliding contact is known to
lead to continuous slipping [24]. Therefore, we com-
puted the relaxation of the dry system without fluid
from the initial configuration when the friction coeffi-
cient is reduced towards zero, see Figure 5. The pack-
ing density increases (i.e. the center of mass is lowered)
monotonously with lowered coefficient of friction. This
should give a plausible long-term limit, as vibration or
tapping leads to a momentary reduction of the contact,
which allows slipping, as would a reduction of the fric-
tion coefficient. The packing for vanishing static friction
is a limiting case for the packing density, though it may
not be the actual limit, depending on the choice of the
tapping pulse. The dependence of the center of mass is
not logarithmic, but a power law (see Figure 6).

Additionally, one can see in Figure 5 that the vibration
is damped faster if the friction coefficient is high. The
effect of the normal damping in Eq. (2) is weaker than
that of the Coulomb friction from Eq. (3).
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FIGURE 8. Shock propagation through the system for the
dry (⇤) and the immersed system (•) for tapping of the bot-
tom. The symbols denote the position of the particle with the
maximal dislocation over the time of the vibration pulse (see
Figure 7) for a given timestep. The wavefronts for the immersed
system are indicated by the dash-dotted line, for the dry system
by the dashed line to guide the eye.



7. RESULTS

7.1. Wide system, tapping of the bottom
only
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FIGURE 9. Compaction of the wide system with tapping
only the bottom for the dry (above, solid line in gray) and the
immersed particles (above, solid line in black), as well as latter
zoomed (below).

The shock wave induced by the tapping on the bottom
is shown in Figure 8 via the position of the particle which
experiences the stronges dislocation from one timestep
to the next. Several particles at different height are only
weakly connected in the granular matrix, so that their
rattling inside a “cage” of particles which are stiffly
connected in the matrix is hardly damped, especially for
the system without fluid (strings of the same symbols
at different height in Figure 8). The sound wave in the
dry system propagates with a speed of 2.36[m/s], while
in the immersed system, it propagates with 3.68[m/s].
The sound velocity of the continuum material would be
14.1[m/s] for the dry and 12.9[m/s] for the immersed
material. The corresponding fronts of the sound waves
are indicated in Figure 8 with dash-dotted (immersed
system) and dashed (dry system) lines. The surrounding
fluid seems to be able to speed up the propagation speed
of the shock wave though the continuum sound velocity
of the material for the particles is lower. The sound
wave is so much higher than in [16], because due to the
compaction on the bottom, the particle contacts are pre-
stressed and therefore much stiffer than on the surface.

The compaction results for the wide system which is
tapped on the bottom (0.06[m] width, 0.07[m] height,
195 particles) are shown in Figure 9. The vibrations are

damped more strongly in the fluid than in the dry system.
While initially, the centers of mass of both the dry and
the immersed particle system started out at 1, the center
of mass of the dry system falls faster, as can be seen by
the increasing distance between the gray and the black
curve in Figure 9.

7.2. Wide system, boundary tapping of the
whole wall

The compaction results for the wide system (same
dimensions as the previous system) for which the tapping
is felt at the whole wall are shown in Figure 10. The
initial amplitude for the system with tapping of the whole
boundary is about 11 times as large than for tapping with
the same intensity on the bottom only. The compaction
is consistent with the previous section. As in the case
of tapping of the bottom, when the whole boundary is
tapped, the center of mass in the dry system falls faster:
With both systems’ initially centers of mass of at 1, the
gray curve for the dry system separates from the black
curve for the immersed system in Figure 10.
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FIGURE 10. Compaction of the wide system for the dry
(above, solid line in gray) and the immersed particles (above,
solid line in black), as well as latter zoomed (below).

7.3. Narrow system, boundary tapping of
the whole wall

The compaction results for the narrow system (0.03[m]

width, 0.135[m] height, 190 particles) for which the tap-
ping is felt at the whole wall are shown in Figure 11.



Surprisingly, the center of mass rises for the dry sys-
tem while the system with fluid is hardly affected. The
damping (decay of the oscillations) is much stronger than
for the square system, which shows the influence of the
wall in this system. When the granular assembly drops,
during the compaction the particle contacts are being
compressed. During the tapping, this compression is re-
leased: For the dry system (gray curve), the particle pack-
ing seems to allow only upward reconfiguration, while
for the system with fluid (black curve), lubrication vis-
cosity seems to compete in such a way that there is hardly
any change (Figure 11).
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FIGURE 11. Compaction of the narrow system for the dry
(above, solid line in gray) and the immersed particles (above,
solid line in black), as well as latter zoomed (below).

8. CONCLUSION AND SUMMARY

Our simulation has shown that the addition of fluid to
a granular assembly can increase the sound velocity in
the system, compared to the dry case. The introduction
of fluid into the slow dynamics of compaction of gran-
ular particles via tapping even for our single parame-
ter with only one value for the density and viscosity
showed a considerable variation of effects. For a wide
system, the high viscosity slowed down the compaction,
irrespective whether the system was tapped only on the
ground or on the whole boundary. For a narrower, but
higher system with about the same number of particles,
the dynamics was altered considerably reversed: While
for the dry system, the center of mass was rising, over the
timescale considered, there was no motion for the system
immersed in fluid.
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