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A theorem by Yoshida which states that the discretization error for the Suzuki—Trotter (ST) decomposition is one
order smaller than for the corresponding approximated Hamiltonian has long been overlooked with grave consequences
for the accuracy of algorithms which use decomposition schemes. In our error analysis for the ground state energy of
the Hubbard Hamiltonian by the projector quantum Monte Carlo method, we have used various orders of ST-
decompositions, including for the first time in this field, pseudo-symplectic methods. We show that higher order does
not necessarily imply better convergence, and identify the condition to obtain good convergence with higher order ST-
decompositions. For the first order ST-decomposition, the ground state energy does not converge to the values for
numerical diagonalization, in agreement with Yoshida’s theorem, which may have caused confusion in connection
with the “fermionic sign problem”. We show how the use of the sign of the fermion determinant is in fact a reweighing
method which for the ground state energy violates some basic Monte Carlo properties (the Gaussian distribution of
observables), in contrast to sampling without sign. Whether sampling with or without the sign deviates less from the
exact ground state energy depends on the system parameters (interaction, filling) and on the test wave function, so
sampling with sign gives not necessarily better or more physical than sampling without sign, a result which can be
supported by arguments on the error compensation. We discuss the implications for related methods.

KEYWORDS: Hubbard model, projector Quantum Monte Carlo, Hubbard—Stratonovich transformation, higher order

Suzuki-Trotter decomposition, minus-sign problem

1. Introduction

The inception of the Quantum Monte Carlo (QMC)
method via the Suzuki-Trotter (ST) decomposition’? has
opened new possibilities to describe many body systems
with controlled numerical approximations. Nevertheless, the
occurrence of negative transition properties in fermionic
systems gave rise to what became labeled as “minus-sign
problem”, which has hampered the development and use of
determinant quantum Monte Carlo (DQMC) algorithms,
both for the ground state” and finite temperature® for the
better part of the last twenty years. Only when negative
transition probabilities were also found in spin-glasses,” it
became clear that the “minus-sign” was not necessarily
something related to fermions. Therefore, some researchers
have argued that the occurrence of the minus-sign problem
originates rather from the combination of the ST-decom-
position and the choice of the representation for the states of
the system and the Monte Carlo sampling.®” Due to the lack
of alternative approaches to “lst or 2nd order ST-decom-
position, with Hubbard—Stratonovich transformation”, it has
been hardly possible to discriminate universal behavior and
artifacts of the traditional combination of approaches. To
overcome this gridlock, we apply both “symmetric” and
“asymmetric” higher order ST-decompositions to answer the
question whether the problem is physical at all or purely an
artifact of the methods employed up to now. Higher order
ST-decompositions have largely been shunned in the field of
QMC (with one exceptions)), as they have the odium of
being cumbersome and numerically expensive to imple-
ment.® Such “symplectic” decompositions have attracted
recent interest in the numerical analysis community for use
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with ordinary differential equations to preserve the “area/
volume” in the phase space.”'” The connection between
ST-decompositions and symplectic integrators runs deep:
The popular Verlet-Stormer'" scheme can be derived from
the ST-decomposition of second order.'” Higher order
methods, with smaller truncation error should cast a light
on what really happens in the lower order methods. We
simulate the two-dimensional Hubbard Hamiltonian
H=K+U
= —t Z(cjﬂcjﬁ +he)+ Uzni,Tni,l, 1)
(ij)o i

where the operator cza (cio) creates (annihilates) a fermion
of spin o = 1 or | at site i. nj, = czncw is the number
operator, ¢t is the hopping parameter for nearest neighbors
(ij), and U represents the strength of the on-site interaction
with t =1 as the energy unit. Even with the very recent
computing power of the Earth Simulator (there may be
larger machines in the top500-list, but whether their
performance as a whole has been measured, or only been
“extrapolated” based on the performance of a smaller
configuration, is in most cases not documented13)), exact
diagonalization is hardly possible beyond 25 sites.!*!>
Therefore, the importance of QMC methods (see refs. 8
and 16 for overviews and references therein) lies in the fact
that they are both practicable and their errors can at least in
principle be controlled.

1.1  ST-decompositions o
The operator exponential e~# = e~#&+) with parameter
6 is split into M ST-slices e "%+ with T = 6/M

A

e—t([%-‘rU) — e—‘tf(e—TU + 0(1,2) (2)
in first order and in second order as
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e_T(k+U) — e—‘[]%/ze—l’[]e—‘r]%/z + 0(7.'3). (3)

To obtain p-th order variants, a single slice of the
operator exponential e *®+V) ig divided into My, substeps
as

”a My N N
e~ TK+U) l_[ e VKo7V + O(‘L’p+1),

n=1
Mup, M,

Yvu=)_m=1 “
n=1 n=1

i.e., for My, = 4, we have

iR o=l o=y, 1K g =110 o=, 7K g =1, 70

e*Vlfk’ (5)

with coefficients y, and 7, for, e.g., Candy & Rozmus,
or Chambersgs in Table A-I, where we have summarized
the coefficients for all methods we are going to use.
Coefficients in quadruple precision are available else-
where.!”"!”) ST-decompositions can be either symmetric or
asymmetric with respect to ST-time. For conventional ST-
decompositions for orders higher than 3, it has been proven
that there must be some negative substeps.’”’ Such
decompositions are derived from zeroing higher order
commutators in the Baker—Campbell-Hausdorff formula,
while for weakly-coupled systems in celestial mechanics,
“pseudo-symplectic” decompositions have been developed
for Hamiltonians H = A 4+ eB with small perturbation
parameters €. The elimination of the terms of O(er’™!)
imposes additional constraints,>'® but allows to derive
decompositions with purely positive ST-substeps y, and
n,. We also try out these pseudo-symplectic decompositions,
as they are up to now untapped resources in the field of
QMC. In the following, we indicate the methods in
Table A-I by the conventional or author’s name, the order
as a following index, as well as a letter if there are several
methods of the same order by the same author, i.e.,
“Yoshidaga ”.

€ €

1.2 Projector quantum Monte Carlo (PQMC)

The ground state can be obtained from the exponential of
the Hamiltonian A acting on a trial function as e *7|T). Our
choice is to let an exponential of ST-length 6 act on bra and
on ket, so the total length of our ST-product is 26. Expansion
in the energy representation yields

e ) = ey " (mT) - |m)

m

=e"(0IT) - 10)
+e By e BT I T) m), (6)

m>0

with eigenvalues Ej < Ey < --- < E,, and eigenvectors
|0),|1),...,|m). The contributions for states energetically
higher than the ground state vanish exponentially with 6
and the corresponding contributions are exponentially
suppressed. An exponential exp(—0H)|T) used to obtain a
ground state is sometimes also called a “filter”.>* The
interaction U in e ®Y is decoupled using the discrete
Hubbard-Stratonovich (HS) transformation.”>® We restrict
ourselves to the repulsive model with U > 0, and abbreviate
the ST-substeps as « =n;7 (or a = y,7, see §2.3). For
o > 0, we obtain
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1 alU
efaUnmm,L = 5 Z exXp |:/ls,~(n,~,T — n,-,l) — 7 (nm =+ ni,i):|
si==%1

1 U
= 3 Z exp|:</1s,- — O;)”LT]
si==%x1

X exp|:<—/lsi - %)nu}, (N

and for negative substeps « < 0,

1
5 > exp[ﬁs,-(nm +ny — 1)

si==*1

e_aU”i,T”rli —

alU
- (niy +n;y — 1)i|

1 U 1
= ES’:Xi:l expl:(/lsi — O[2> <”i,T - 2)]
X exp|:(/1si - azU) (”i,i — ;)i| (8)

with A = arccosh[exp(JaU|/2)] and auxiliary HS fields
s; = 1 for each lattice site i over the whole ST-time. For
higher order ST-decompositions, the HS configurations are
not only independent for all ST-slices, but also for all
substeps. For a given ST-slice /,, we denote the entire
configuration of all HS spins s; on sites L by €. The
resulting diagonal exponential matrix V;, ,(€2) with electron
spin o leads to potentials which fluctuate in space and ST-
time during the MC process. The ST-product is then

My

By, o(Q) = [ [e 7 Kemmrtha(®, ©)

n=1
In PQMC, the wave functions |W) and (®| for M ST-slices
are computed from the trial wave function |T) as

M My
=[] []Bu-@ID, (10)
[=M/2+1 n=1
M/2 Mgy,
(1)

(@ =TI []]] Buo.
=1 n=1

For N up and N down electrons with the system of L sites,
|T), |¥), and |®) are L x N matrices. The statistical weight
for a particular set of HS configurations is given by the
fermion determinant for each spin direction o

W, (2) = det(P|W). (12)
The Metropolis-transition probability is
| W (@) W (@)

P = PP = s 13
trans T+ | WT(QOld)Wi(QOId)l ( )

while we have used the heat-bath transition probability

Py P
Pirans = — . (14)
1+ PP,

The Green’s function G, is obtained from the wave
functions in egs. (10) and (11) as

G, = W)((@|W) " (@]. 5)

1.3 The discretization error in the approximated
Hamiltonian
The following discussion is independent of the nature of

©?2012 The Physical Society of Japan
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the quantum particles, and applies to all Hamiltonians, and
probably to a large class of path integral methods, too.
PQMC-methods must give the right answer for the ground
state energy, in agreement with exact diagonalization
methods, within the numerical and statistical errors of the
method. Unfortunately, a proper error analysis of the
DQMC-procedures has never taken place. For a ST-stepsize
7, the approximation to the operator exponential exp(6H) is
correct up to O(z”). Correspondingly, the truncation error is
of order O(t’*!"). The more interesting question is: How
accurate is such an approximation for the Hamiltonian?
Regarding the wide-spread use of first order decomposition,
the tacit assumption among many researchers may be that
the Hamiltonian is approximated with the same order as its
exponential. Unfortunately, this is not the case. The most
convenient approach which is common in numerical analysis
for similar cases is that of “backward error analysis”:
Instead of computing how the actual result H + € deviates
from the exact result H (“forward error analysis”), one
figures out for which problem H’ the given approach is
exact, and then obtains the error as ¢ = H — H'. Surpris-
ingly, for classical Hamiltonians H = H4 + Hp, it turns
out?” that for the application of the first order decomposition
of exp(6H), one has

H' = Hy+ Hy+ 2 {Ha H) + 0@, (16)
with the Poisson brackets {-}. Let us flavor this result
explicitly in words: Results obtained for a first order
approximation of the exponential of a Hamiltonian are of
zero order in the Hamiltonian! In classical physics, the
solution of Newton’s equation of motion in zero order means
that the dynamics is lost, the result converges towards the
equilibrium position.”® And a zero order approximation is
zero order, no matter how small 7 is taken. For the second
order ST-decompositions,

H =H,+ Hp
7 1 .
+ I {Ha, Hp}, Hp + 3 Hpyp 4+ 0(), (17)

is obtained”” where the approximation of the Hamiltonian is
of first order. At least for second order ST-decompositions,
the error in the approximated Hamiltonian can be controlled
by the ST-stepsize t. Nevertheless, if the simulation contains
a programming mistake of even only “half” a ST-slice
multiplied at the wrong place, this will make the algorithm
first order. For quantum Hamiltonians, it should be enough
to replace the Poisson brackets by the commutator. For
general p + 1-st order ST-decompositions, Yoshida®® has
shown that the error is of p 4+ 1-st order, so the Hamiltonian
is approximated in order p. Of course, the occurrence of the
Poisson brackets in the error term of the Hamiltonian leads
to very system-dependent deviations from the exact results.
Depending on the sign of the Poisson brackets in egs. (16)
and (17), the exact value may be approached from below or
from above for decreasing 7, so there are no bounds for ST-
approximations, unlike e.g., the Ritz-variational method
(“always above the exact value”).

1.4 Negative weight sampling and minus-sign problem
In eq. (13), the sign of the product of two determinants
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W, W, may be negative, and it has become a custom’” to
factor in this sign not in the transition probabilities, but in
the computation of expectation values as

(AS) AT — A"
Sy — Sst-—8§~

[A] = (18)
where (-) denotes the sampling average during the simula-
tion and [-] denotes the thermal expectation value. A" is the
average of configurations with positive weight, and A~ with
negative weight. ST is the likelihood for positive and
negative sign, respectively. When (S) is close to zero, [A]
becomes undefined or fluctuates large, which is called the
minus-sign problem. One purpose of this work is to compare
the quality of averages [A] with conventional averages
sampled without sign (A).

2. Higher Order Decompositions

We run the simulations for 4 x 4 lattice systems with
periodic boundary conditions in FORTRAN and reference
codes in MATLAB. If not mentioned otherwise, a single
run is thermalized with Nypema = 1 x 10° sweeps, after
that measurements are taken in every of the following
Nmeas = 3 x 103 sweeps. If not indicated otherwise, we
sample 100 independent HS configurations from runs with
different MC seeds. Error-bars are computed as standard
deviations of the results of these 100 configurations. Where
no error-bars are shown they are smaller than symbols.
Where appropriate, we included in many cases the Monte
Carlo convergence of the data. As a projection parameter,
where not mentioned otherwise, we use 6 =4. The
stabilization is carried out at every At =0.5 ST-time.
Unlike in the finite temperature algorithm, even at half-
filling the minus-sign problem cannot be excluded in PQMC
unless a proper trial wave function is chosen. We mostly
used dimerized trial wave functions, i.e., the lowest
eigenvectors of the hopping matrix resp. its exponential
where every second matrix element is chosen to be larger
than £.¥ For 1st and 2nd order ST-decompositions, this trial
wave function does not have any minus-sign problem at
half-filling. Test runs with plane waves are also performed
for some cases. The matrix inversion uses the LU-
decomposition from LAPACK. For the stabilization,
we have used QR-decomposition with pivoting after
Householder. Other techniques gave equivalent results.
The coefficients of all decomposition methods used are
given in the Appendix in Table A-l. After some familiarisa-
tion, we tended to use the pseudo-symplectic methods to test
assumptions, as they were the computationally cheapest
approaches (minimal discretization error with acceptance
rates nearly as high as the lower order methods) and tried out
the other methods afterwards. We use multi-spin updates
where a certain percentage of the whole HS configuration
is changed, not like single-spin updates in which single
HS spins are flipped randomly on a given ST-slice in
sequential.'® We prefer multi-spin updates as we feel
qualms about the ergodicity of the algorithm.*" Per MC
step, 1073 of the HS spins are reversed and the acceptance of
this reversal is accepted with the heat-bath probability in
eq. (14). For 6 = 4 and t = 1/8, for one subslice this means
that about two spins are modified per trial, and four spins for
two subslices. There may be more efficient possibilities for

©?2012 The Physical Society of Japan
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Table I. Comparison of the ground state energy from a dimerized trial wave function sampled with sign according to eq. (18) and without sign as well as
the average sign. The methods marked with * have coefficients of absolute values |y, | and |, | larger than 1. For methods of order four and higher, only for
pseudo-symplectic methods the |y, | and |n,| sum up to 1. Ny = N, =5 with U =4 and 7 = 1/8.

Method p (E) sign ignored [E] with sign Average sign (S) > vl for K >, Im,| for U
Exact —1.2238
Suzuki-Trotter; 1 —1.2418 £ 0.0008 —1.2420 4+ 0.0008 0.9954 + 0.0004 1.0 1.0
McLachlan, 2 —1.2229 £ 0.0008 —1.2232 4+ 0.0008 0.9954 + 0.0004 1.0 1.0
Suzuki-Trotter, 2 —1.2237 £ 0.0008 —1.2240 £+ 0.0008 0.9955 £ 0.0004 1.0 1.0
McLachlans 3 —1.222 +0.001 —1.225 +£0.001 0.952 £ 0.001 1.3760 1.3760
Ruth; 3 —1.205 £ 0.001 —1.225 +£0.002 0.502 £ 0.004 1.0833 2.3333
Blanes & Moany 4 —1.201 £ 0.001 —1.223 £ 0.002 0.425 £ 0.005 1.1562 2.4007
Calvo & Sanz-Sernay 4 —1.222 +£0.001 —1.224 +0.001 0.9735 £ 0.0009 1.2811 1.2418
Candy & Rozmusg* 4 —1.167 £ 0.002 —1.6£23 0.002 £ 0.002 1.7024 4.4048
Chamberssa 4 —1.2239 + 0.0009 —1.2242 4+ 0.0009 0.9953 + 0.0004 1.0 1.0
Chamberssp 4 —1.2240 £ 0.0007 —1.2243 £+ 0.0007 0.9949 + 0.0004 1.0 1.0
McLachlany 4 —1.2234 £ 0.0009 —1.2242 + 0.0009 0.9838 £ 0.0008 1.4496 1.1716
Suzuki fractaly 4 —1.204 £+ 0.002 —1.227 £ 0.002 0.462 £ 0.004 1.4869 2.3159
McLachlans 5 —1.198 £ 0.001 —1.221 £ 0.002 0.440 £ 0.004 1.4606 2.3833
Tselioss* 5 —1.225 £ 0.004 —14+£03 —0.000 £ 0.001 1.9717 10.8147
Blanes & Moanga 6 —1.217 £ 0.001 —1.223 £ 0.001 0.860 £ 0.003 2.0118 1.6592
Blanes & Moangg 6 —1.200 £ 0.002 —1.225 +£0.003 0.372 £ 0.004 1.2061 2.4935
Chambersga 6 —1.2229 + 0.0008 —1.2231 + 0.0008 0.9949 + 0.0004 1.0 1.0
Chambersgp 6 —1.2252 + 0.0008 —1.2257 + 0.0008 0.9941 + 0.0005 1.0 1.0
Yoshidaga* 6 —1.158 £ 0.003 —0.8£0.6 0.002 £ 0.001 2.8842 5.7107
Laskar & Robutelga 8 —1.2236 + 0.0008 —1.2240 4+ 0.0008 0.9945 £ 0.0005 1.0 1.0
Yoshidagp* 8 —0.878 £ 0.005 —20+£1.2 —0.000 £ 0.004 10.3491 15.2548

the sampling for higher order methods according to the
width of the ST-slices, but that is something we will address
in the future.

Production runs were performed on AMD and SUN
processors and were consistent with tentative tests in
quadruple processors on DEC ALPHA and INTEL proces-
sors.

We have focused on the computation of the ground state
energy as the most crucial quantity for zero temperature.
According to the Hohenberg—Kohn theorem for the (correct)
ground state energy there is a unique electron density
distribution. Therefore, if the QMC simulation reproduces
the energy correctly, it can also be expected that all other
observables can be computed in a reliable fashion.

21 Ny=N,=5withU =4

For the system with 10 electrons (N = Ny = N, =5) at
Hubbard interaction U =4, the average sign is approxi-
mately 1 as the ground state of the kinetic energy is non-
degenerate,>? corresponding to a closed shell system. We
have implemented the exact diagonalization and the ground
state energy per lattice Site FEexaee = —1.2238, which is
consistent with ref. 33.

In Table I, we show the comparison of the ground state
energy sampled with sign [eq. (18)] and without sign as well
as the average sign. The last two columns are the absolute
sum of the coefficients for the ST-substeps from eq. (4) for
the kinetic ), |,| and interaction )", |n,| terms. Test runs
with plane waves are also performed and the results are
similar. We have performed the same simulations on
MATLAB and we obtained the similar results. In our
simulations, there are some higher order ST-decompositions
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which fail to give “good” average signs, namely Ruths,
Blanes & Moany, Candy & Rozmuss, Suzuki fractaly,
McLachlans, Tselioss, Blanes & Moangg, Yoshidags, and
Yoshidagp. For all methods with reasonable average signs,
the energies are the same for sampling with and without
sign, consistent with the value for the exact energy, except
for Suzuki-Trotter;. For Suzuki—Trotter;, while the results
for large ST-stepsize are consistent on different architectures
and compilers, when we refine the ST-stepsize, the results
converge to different energies on different computer
architectures. For the best accuracy we have (10 byte
extended precision on AMD with PGI-FORTRAN compiler)
the ground state energy does not converge to the exact value
(Table II and Fig. 1). For SUN processors with its native
FORTRAN compiler and unidentifiable precision (nomi-
nally 8 byte double precision, but how many digits are lost
internally due to optimization is not clear), the energy values
show a drift towards higher than the exact values, while on
INTEL processors with MATLAB, the values are in between
the SUN and AMD values. As the numerical error is the
sum of rounding and discretization errors, for zero order
algorithms, the increase of the rounding error is proportional
to the timestep M and the reduction of the discretization
error is proportional to 1/M, see Fig. 2. Accordingly, the
error is not minimal for the smallest timestep. Due to this
interference of errors, deviation of the energy from the exact
ground state value on the AMD machines is consistent with
the theorem in §1.3, while the better agreement on SUN and
INTEL is spurious, as there is no control or information
whether proper rounding or only truncation happens. The
average sign (S) is subtly larger on AMD than on SUN
processor. Depending on the ST-stepsize 7, there are

©?2012 The Physical Society of Japan
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Table II.

Ground state energy for the 4 x 4 systems at U = 4 with Ny = N, = 5 from Monte Carlo runs ignoring the sign and taking the sign into account

with different values of t for & = 4 by Suzuki-Trotter; on AMD (upper part) and SUN processors (lower part).

Processor ST-stepsize © (E) sign ignored [E] with sign Average sign (S)
Exact —1.2238
1/8 —1.2420 £+ 0.0006 —1.2423 +0.0006 0.9960 =+ 0.0002
1/16 —1.2292 4+ 0.0008 —1.2296 + 0.0007 0.9949 £ 0.0003
AMD 1/64 12257 40,0007 —1.2264 % 0.0007 0.9939 % 0.0006
10 byte 1/128 —1.2248 4+ 0.0009 —1.2251 + 0.0009 0.9943 £ 0.0004
1/256 —1.2254 4+ 0.0009 —1.2258 £ 0.0009 0.9938 + 0.0005
1/8 —1.2418 +0.0008 —1.2420 £ 0.0008 0.9954 £ 0.0004
1/16 —1.2294 £ 0.0006 —1.2299 + 0.0006 0.9946 £ 0.0003
SUN 1/64 —1.2234 4+ 0.0008 —1.2238 + 0.0008 0.9952 £ 0.0004
8 byte 1/128 —1.2231 4 0.0009 —1.2236 %+ 0.0009 0.9936 =+ 0.0005
1/256 —1.2233 +0.0008 —1.2238 +0.0008 0.9932 £ 0.0006
-1.222 T T T T T T Error
; 22408 Worse Total error ~ M: total number of
dedATyY 1 - L timesteps 1/t
$% X accuracy ps oc
-1.226 & b
L \
1
-1.2281 b T ' £
2 L % ] ~ ll‘ ,\r" )
% 128 \ _~Rounding
S 1232} e 1 -\ T 7 emorocM
3 -1.223] X | \‘ . \l‘,
(TJ -1.2341 s = ol * 7 \\ ;\’
c ® * o o G
I} % -l22ab’ [ :F | » . . .
12361 £z ' ! 1 JRANE Discretization
S g 05| T I Better ke AN ]/M
-1.238F s o 1 1 accuracy |~ N error OC
Y L ] | | i [N il e T
-1.2265 e —
22 0'Larger © Smaller 7t
-1.242f o T rotseer e %
0 0.02 0.04 Trottgi'osstepsizg S 8 01 0.12 Fig. 2. Schematic representation for the total error as the sum of the
discretization error and rounding error for increasing the number of steps,
. . i.e., decreasing stepsize. Depending on the implementation (rounding or
Fig. 1. Ground state energy for the 4 x 4 systems at U =4 with Ny =

N, =5 from Monte Carlo runs with different values of 7 for 6 =4 by
Suzuki-Trotter; in AMD processor (10 byte extended precision, x solid
line: without sign, O gray line: with sign) and in SUN processor (8 byte
double precision, x box-frame: without sign, O gray straight-bar: with sign).
To the value for the exact energy (#), a dotted line is added to guide the eye.

between 6 and 15% more negative configurations on SUN
than on AMD. We consider this as an additional indication
(other than the number of bytes) that the rounding is more
accurate on AMD, as rounding errors should increase the
number of negative configurations. Other effects as reason
for the deviation (too small projection parameter etc.) can be
excluded as the energy is too low and the convergence
of the higher order methods for the same parameters is
unimpaired. This should serve as a warning that reducing the
ST-step in first order methods does not guarantee conver-
gence. Neither first nor second order fitting of the data in
Fig. 1 would reliably lead to the minimal deviation from the
exact energy for T — 0. For stepsizes larger than 1/64, no
adverse effects were observed from SUN’s double precision,
and the results were consistent with the ones obtained from
AMD’s quadruple precision, so it seems it is really an
accumulation of rounding errors.

The higher order Suzuki fractal decompositions
which were developed to effectively resolve the minus-sign
problem®*3” and help to clarify the mechanism of high-7,

34,35)
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truncation), the rounding error may be negative, not positive as in the
sketch.

superconductivity?” have malign effects on the average sign
compared to other methods. These methods have been
applied primary in the frustrated spin systems.*®

The pseudo-symplectic decompositions of Chambersya,
Chambersyg, Chambersgs, Chambersgg, and Laskar &
Robutelgya which are all positive-definite decompositions
give benign average signs [~ O(1)], and the ground state
energies from ignoring the sign are consistent with the exact
value.

With the outcome in this section, we have seen which
decompositions give a “good” sign and which give a “bad”
sign. Therefore, for the cases where there are control data
with “good” sign available, we can at the same time see the
behavior of sampling with bad sign. In general, the deviation
between the averages computed with and without sign
become larger with decaying average sign. For some higher
order ST-methods, the ground state energies with sign are far
away from the exact value with large error-bars (marked
with = in Table I). The ground state energy from ignoring
the sign by Tselioss is consistent with the exact value while
the value computed with sign is separated from the exact
value by a large error-bar. In Fig. 3, one can see that the
ground state energies for methods with malign signs (close
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Fig. 3. Ground state energy vs MC sweeps for the 4 x 4 systems at U = 4
with Ny = Ny =5 from Monte Carlo runs ignoring the sign (upper data
cloud) and taking the sign into account (lower data cloud) for the same
configurations in v =1/8 for 6 =4 with Ruth; (O with gray shadow),
Blanes & Moang (x with box-frame), Suzuki fractaly (— with dashed
envelope), and McLachlans (A). To the value for the exact energy (), a
dotted line is added to guide the eye.

to 0 so that the convergence is bad) in Table I are closer to
the exact value than those from ignoring the sign. It will turn
out that this is not universal, but depends on the filling.

When we look at the absolute sum of the coefficients over
the kinetic ), |y,| and interaction )_, |n,| terms of the
corresponding methods, we note that when ), |17,| > 2, the
average sign deteriorates for Ruths, Blanes & Moany, Candy
& Rozmusy, Suzuki fractaly, McLachlans, Tselioss, Blanes
& Moangg, Yoshidaga, and Yoshidagp. Moreover, we find
that such a deterioration of the average sign is proportional
to the magnitude of ), |n,|. This means that the average
sign varies strongly with the symmetry of the position of the
interaction term U in the ST-substeps, but not with the order.
The determinant of a ST-product of commuting symmetric
exponential (positive) matrices would be positive-definite,
so the sign cannot be attributed to the ST-decomposition
alone. Only the decoupling of the interaction with the HS-
transformation leads to alternate multiplication of the
exponentials for the kinetic term and varying diagonal
matrices which leads to a loss of symmetry of the
accumulated product and the subsequent decay of the sign.
For Suzuki-Trotter; ,, the acceptance rate for multi-spin
updates is 45-46%. The acceptance rates for higher order
pseudo-symplectic methods are nearly as high, for general
higher order decompositions it is lower, and lowest are those
for decompositions with malign signs.

From Table I we see that the ground state energy with
sign is always lower than that from ignoring the sign. An
exception is Yoshidaga, for which very large outliers and
abysmal sign in some runs leads to averaging “good” and
“bad” configurations. We are pretty sure that we did not e.g.,
mistype the coefficients, since the outcome for QMC is
consistent with our experiences in molecular dynamics
simulations,'” where Yoshidags also yielded the largest
outliers and consequently the most unreliable configuration
averages. That indicates that not all ST-decompositions of
high order are actually useful.

104002-6

-1.064 — T T T T T T T
%
o -1.084F 1
@
g
-~ L S AR &
=
(0]
[
Y oq 104t 1
-1.124 : ; : : : : : :
0 2 4 6 8 10 12 14 16
Squared Trotter stepsize 12 x 10°

Fig. 4. Ground state energy for the 4 x4 systems at U =8 with
N; = N, =5 from Monte Carlo runs ignoring the sign (black line) and
taking the sign into account (gray dashed line) for the same configurations
with different values of t for & = 8 by Suzuki-Trotter, (x) and Chamberss
(O). To the value for the exact energy (®), a dotted line is added to guide the
eye.

2.2 NT=N¢=5Wl'l‘h U=38

For U = 8, we use a projection parameter with 8 = 8 to
obtain better convergence. The thermalization is not as
efficient as for U = 4 with multi-spin updates since the HS
configuration space becomes larger with respect to the
projection parameter 0 for fixed . We therefore take an
average of 50 HS configuration samples. In Fig. 4, we show
the convergence to the ground state energy by Suzuki-—
Trotter, and Chamberssp. We also tried to halve the flip
probability in updating multi-HS spins to increase the
acceptance rate for Chambersys. The deviations from the
original flip-rate are negligible. For both methods the
fluctuations for the computation with sign taken into account
([A]-averages) are larger than the (A) with ignoring the sign.
In Fig. 2 of ref. 39, with a different trial wave function for
various projection parameters and different stepsizes, both
[A]- and (A)-averages are consistent, and the convergence to
the same energy value was obtained.

2.3 Variants of higher order ST-decompositions
Alternative simulations are obtained by simply exchan-
ging the kinetic K and interaction U terms in eq. (4), so that

A A~ Msub A A
e TK+U) _ l—[ e VutUg=m,7K + O(Tp+1).
n=1

The ordering of y, and 1, may not be interchanged. We
have interchanged K and U for Blanes & Moany, Blanes &
Moangs, and Blanes & Moangg, though in the original
paper®” it was mentioned that for the problems considered
the kinetic K and the interaction U were qualitatively
different and not interchangeable. As our problems are
different, we try the exchange anyway. In Table III the
ground state energy are sampled with and without sign, the
last two columns are the absolute sum of the coefficients
over interaction Y, |y,| and kinetic >, |n,| terms. We
clearly see that, expect for Blanes & Moangs, the average
signs increase as the asymmetry of the ST-products seems to

19)
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Table IIL

Comparison of the ground state energy from a dimerized trial wave function sampled with sign according to eq. (18) and without sign as well as

the average sign after interchanging the order of the kinetic term K and the interaction term U in the decomposition. Ny =Ny =5withU =4and 7 =1/8.

Method p (E) sign ignored [E] with sign Average sign (S) >, |yl for 0 >, In,| for K
Blanes & Moany 4 —1.201 £ 0.001 —1.223 £ 0.002 0.425 £ 0.005 2.4007 1.1562
”, order reversed —1.223 £ 0.001 —1.224 £ 0.001 0.983 £ 0.001 1.1562 2.4007
Suzuki fractaly 4 —1.204 £ 0.002 —1.227 £ 0.002 0.462 £ 0.004 2.3159 1.4869
”, order reversed —1.220 + 0.001 —1.225 +0.001 0.917 4+ 0.002 1.4869 2.3159
Blanes & Moanga 6 —1.217 £ 0.001 —1.223 £ 0.001 0.860 £ 0.003 1.6592 2.0118
”, order reversed —1.211 £ 0.001 —1.224 £ 0.002 0.670 £ 0.004 2.0118 1.6592
Blanes & Moangg [§ —1.200 £ 0.002 —1.225 £0.003 0.372 £ 0.004 2.4935 1.2061
”, order reversed —1.223 +£0.001 —1.224 +£0.001 0.978 £ 0.001 1.2061 2.4935
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Fig. 5. Ground state energy for the 4 x4 systems at U =4 with
Ny = N, =7 from Monte Carlo runs ignoring the sign (black line) and
taking the sign into account (gray dashed line) for the same configurations
with different values of t for 6 =4 by Ruthy (O), Chambersssy (),
McLachlans (/\), Laskar & Robutelgs (x). Added are the data for sampling
without sign from ref. 41 extrapolated to T — 0 with the initial trial wave
function from unrestricted Hartree—Fock solution (x) and paramagnetic state
(V). To the value for the exact energy (#), a dotted line is added to guide the
eye.

be affected less by the absolute sum of ST-substeps over the
kinetic term, but over the interaction term. Similarly, the
decay of the average signs are proportional to the absolute
sum over interaction term, as for Blanes & Moang,, but not
to the absolute sum over kinetic term unless the absolute
sum over kinetic term starts to become too large. A
symmetric product of symmetric positive-definite ST-slices
would of course always have a determinant with positive
sign. The decrease of the average sign can therefore be
attributed to the asymmetry of the ST-product which
accumulated during the multiplication of exponential
operators.

24 Ny=N,=T7withU =4

The average sign for the system with 14 electrons
(N = Ny = N, =7) at Hubbard interaction U = 4 becomes
prohibitively small where the ground state of the kinetic
energy is degenerate,” corresponding to an open shell
system with the exact ground state energy per lattice site
Eexace = —0.9840.%¥ In Fig. 5, we show the convergence of
our ground state energy computed with and without the sign

104002-7

for symmetric and asymmetric decompositions. Symmetric
pseudo-symplectic higher order methods (Chambersss and
Laskar & Robutelgy) give much better accuracy than
asymmetric methods (Ruths; and McLachlans) do. For
Laskargy at T =1/32, the ground state energy with sign
gives a miserable error-bar of 0.104, no wonder with an
average sign of (S) = 0.014 £ 0.003. Elsewhere,*" a ground
state energy of Ejg; = —1.032 with unrestricted Hartree—
Fock solution and Eje» = —1.031 with paramagnetic state as
an initial trial wave function were reported for sampling
without sign (* and V in Fig. 5) extrapolation to & — 0, but
our deviations from the exact value for sampling without
sign are considerably smaller.

3. The “Sign Problem”

3.1 Sampling “with sign”

The argument that the “negative configurations” result
from “fermion exchange” (virtual or otherwise) can be
borrowed from the world-line simulation. It is both tempting
and misleading: The permutation matrix

0 1
P=
(7o)

has indeed a negative determinant. But in Quantum Monte
Carlo, we never deal with matrices themselves, only with
their exponential, and det[exp(z P)] is of course positive, as
its eigenvalues are the exponentials of the eigenvalues of TP.
The sign of the fermion determinant in DQMC [see eq. (12)
for the ground state and ref. 42 for finite temperature] is the
product of the sign of all singular values of the (®|W¥), some
of them are exponentially small, much smaller than the
error-bounds on the original ST-product and especially of
the approximated Hamiltonian according to eqgs. (16) and
(17). There is no rigorous mathematical argument con-
ceivable to assign quantities or their sign a crucial role in the
sampling process which to all intents and purposes is smaller
than the discretization error in the simulation, but the sign of
the determinant is exactly that.

A similar argument can be made for eq. (18): That (AS)
cannot be factored into (A)(S), so that (S) simply drops out
implies a statistical correlation between A and S, as has been
argued by one of the authors earlier.>” If we would take such
a correlation at face value, again it would hinge on the signs
of the smallest singular values, smaller than the error in the
decomposition. So that sampling with sign will give better
observables than sampling without sign, we need a rather
more “sizeable” effect.
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As statistical weight in eq. (13) in DQMC the absolute
value of the fermion determinant is chosen. Some articles
refs. 43 and 44 give the formula without absolute values
even when they state later that the absolute value must be
taken. The actual sampling has to use the absolute value,
everything else is impracticable, and, on top of that, negative
probability measures would be at odds with Kolmogorov’s
axioms. For importance sampling, the transition probabilities
are to be chosen so that the algorithm becomes ergodic, and
then the averages are computed as simple averages over the
Monte Carlo sweeps. As we have shown, the sign of the
fermion determinant is not a physical quantity, as it depends
at least on the specific ST-decomposition and, as we show
later in §4 in case of PQMC on the test wave function.
Methodologically, in the “minus-sign sampling” in eq. (18)
the sign is reintroduced ad hoc after the sampling and the
measurement, so it is actually a reweighing procedure,
which must be justified by its statistical merits.

3.2 Distributions

Monte Carlo sampling is based on the law of large
numbers, and accordingly, the sampled data, especially the
energy data, should be Gaussian distributed.* In Fig. 3, the
ground state energies computed with sign lie closer to the
exact value than the values computed without sign.
However, in Monte Carlo sampling, we should not only
have an eye on the averages, but also on the distributions.
For the sampling with sign, we have to subtract the bins of
the samples for negative sign from those with positive sign.
The distribution of the sampled values for the energy with
the decomposition after Ruth; is Gaussian distributed when
the sign is ignored (Fig. 6, above). The result with sign
(Fig. 6, below) is a far cry from the Gaussians which are
assumed for the sampling in Monte Carlo theory. Never-
theless, Gaussian distributions are a prerequisite for the
importance sampling: We cannot just give it up on a whim to
justify an ad hoc conceived post-processing method, so the
shape of the distribution does not favor sampling with sign.

3.3 Electron densities

After the Hamiltonian has turned out to be rather less well
preserved than its exponential in eqs. (16) and (17), it is time
to ask how negative transition probabilities are obtained
anyway. The Metropolis transition probability for single-
spin flips is

Pr=1+65- Ga(l)i,h (20)
8y = exp[A(s™¥ (D) — s2(1)] — 1 Q1)
8y = exp[—A(™Y (D) — )] — 1, (22)

where s}’ld(l) is the old HS spin on the i-th site at the /-th ST-
slice and s7°¥(/) is after the HS spin flip-trial. n;; = G5(0);;
is the i-th diagonal element of the Green’s function at the
I-th ST-slice, with A = arccosh[exp(|aU|/2)] from eq. (7).
For higher order ST-decompositions, the Green’s functions
for the substeps n are obtained by replacing / with /,,, and for
negative substeps §; = 8, according to eq. (8).

For relatively small ST-substeps o with U > 0, and
therefore reasonable aU, negative transition probabilities
in eq. (20) can only be reached for electron densities n;,
smaller than 0 (6, > 0) or larger than 1 (8, < 0), see Fig. 7.
Of course, the meaning of the n;, < 0 is not that of holes in
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Fig. 7. Graph for §,,4, in egs. (21) and (22).

a half-filled band, it is a negative density created in an empty
state. Symmetric to the densities smaller than O in Fig. 8
which violate common sense, we see densities with n;, > 1
which violate fermion statistics. For fermion systems,
quantitative errors in the density are actually qualitative
violations of the fermion principles, which affects all
variable computations. When we look at the histogram for
electron densities n;, at strong repulsion at half-filling in
Fig. 8, we see that the higher the order of the ST-
decomposition is, the more unphysical densities smaller
than 0 and larger than 1 are suppressed. We conclude that
the higher order methods in Table I give more accurate
results than Suzuki—Trotter; for the energy, as there are less
unphysical densities. Current symplectic ST-decomposition
only conserve global properties of the total Hamiltonian and
its exponential, they do not constrain individual electron
densities to their physical values, though higher order
methods reduce the number of negative densities.

3.4 An alternative sampling scheme

The hope that the negative densities in PQMC stem from
ST-slices “close” to the test wave function, which are not
used for Monte Carlo sampling, but Fig. 8 tells otherwise:
For anti-ferromagnetic ordering, obviously the observable
computation itself is affected. This error will not “go away”
by averaging: Unphysical spikes in the density will influence
the results for Fourier transform and density correlation
functions, and, moreover, unphysical diagonal elements of
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Fig. 9. Ground state energy vs MC sweeps for the 4 x 4 systems at U = 4
with Ny = N, =5 from Monte Carlo runs ignoring the sign without density
cutoff (upper data cloud) and with density cutoff (lower data cloud) for the
same configurations in T = 1/8 for 6 = 4 with Ruth; (O with gray shadow),
Blanes & Moany (x with box-frame), Suzuki fractaly (— with dashed
envelope), and McLachlans (A). To the value for the exact energy (), a
dotted line is added to guide the eye.

the Green’s function n;, = G,(l);; may indicate that the
off-diagonal elements G,(l);; are also unreliable: Fourier
transforms and higher order correlation functions may be
even farther off. As we have seen that ST-methods do not
constrain individual electron densities, so we can try to
eliminate unphysical densities “by hand”. We can contrive a
new “constrained sampling” scheme where we continue to
use the weight function after eq. (14) to obtain the MC time
sequence of HS configurations for the sake of ergodic
sampling, but we allow only those densities for sampling
where all densities fulfill the fermion condition 0 < n;, < 1
and throw away all other HS configurations which lead to
unphysical n;, > 1 or n;, <0 for each spin direction o
during the sample procedure. In Fig. 9, it can be seen that
the deviations from the exact value when ignoring the sign
becomes smaller compared to direct sampling indiscriminate
of the densities. In Fig. 10, we compare the ground state
energy with traditional sampling and sampling with density
cutoff ignoring the sign and taking the sign into account for
the symmetric Chambersys. By using the sampling with
density cutoff, the ground state with sign and without sign lie
at the same value within the statistical error-bar. Tests with
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Fig. 10. Ground state energy for the 4 x 4 systems at U =4 with
N; = N, =5 for different values of 7 for 6 =4 by Chamberssy without
density cutoff (x solid line: without sign, O dashed line: with sign) and with
density cutoff (x box-frame: without sign, O gray straight-bar: with sign).
To the value for the exact energy (#), a dotted line is added to guide the eye.

other methods such as Chambersgg and Laskar & Robutelga
yielded similar results. For the asymmetric decomposition
Ruths shown in Fig. 11, the ground state energy of ignoring
the sign by using the sampling with density cutoff becomes
much closer to the exact value while the values with sign
start to deviate more from the exact value. Results with
McLachlans are similar. Even though the unphysical
densities are relatively rare in Fig. 8, the deviations are
significant, so large, that the distance of PQMC-data for the
ground state energy and the exact diagonalization is larger
than the error-bar. That is the effect of “unphysical
densities”, that a few measurements can create a significant
drift in the data. In other words, when we do not allow
unphysical electron densities on those slices which enter the
sampling (mind that there may still be unphysical densities
hidden away from these slices), the values for the ground
state energy computed with and without sign get closer to
each other. So there is a strong suspicion that the deviations
of the samples with and without signs stem from weird
correlations between the configurations with negative sign
and their unphysical densities. The minus-sign sampling in
eq. (18) will only eliminate unphysical electron densities if
either the up- or the down-spin determinants are affected.
If both up- and down-determinants are negative, the total

©?2012 The Physical Society of Japan



Person-to-person distribution by the author only. Not permitted for publication for institutional repositories or on personal Web sites.

J. Phys. Soc. Jpn. 81 (2012) 104002

FuLL PAPERS

X. WanG and H.-G. MatutTis

-1.198 — T T T T T T T
o -1.208} 1
‘®
5}
Q
>
o
X
W o1218f <
) 0}
? o
D L SR T T
¢ \ o o o
ii 1 | .
-1.229 : : : : : : : :
0 2 4 6 8 10 12 14 16
Squared Trotter stepsize 72 x10°
Fig. 11. Ground state energy for the 4 x 4 systems at U =4 with

Ny = N, =5 for different values of t for 6 = 4 by Ruth; without density
cutoff (x solid line: without sign, O dashed line: with sign) and with density
cutoff (x box-frame: without sign, O gray straight-bar: with sign). To the
value for the exact energy (#), a dotted line is added to guide the eye.

configuration is positive, and there is no compensation
and the two unphysical densities will affect the observable
computation.

In the presence of errors, e.g., due to lack or faulty
stabilization, too large ST-stepsize, too many unphysical
densities, dysfunctional matrix inversions,>” beneficial
effects of the inclusion of the sign can be expected up to a
certain point. The noise will affect the determinant so that
the contaminated configurations will be distributed with
equal probability into the bin with positive and that with
negative sign. Nevertheless, if both up- and down-determi-
nant become negative, the contaminated data are sampled as
“positive configuration”, and no compensation will occur.
The minus-sign sampling bloats the error-bars. Historically,
large deviations between diagonalization values and QMC
simulations also arose from erroneously reported data: We
were notified*® that exact diagonalization results in ref. 47,
had been obtained probably under some symmetry assump-
tions, so that the exact diagonalization results for the ground
state energy with the full matrix are lower by 10% and more.
Therefore, also reference data from exact diagonalization
may be unreliable, so that we computed our own data. In
Table I, for Suzuki-Trotter; the deviation from the exact
energy are hopelessly too large both for sampling with and
without sign, but that is no contradiction to the validity of
the PQMC-method, only a proof that the commutator in
eq. (16) will not oblige to vanish with Suzuki—Trotter;. It is
first order ST-decompositions which lead to uncontrolled
approximations, not the sampling ignoring the sign.

4. Effect of the Trial Wave Functions

When we want to analyze the errors of our PQMC-
method, a question which has not been touched is the
influence of the test wave function. Suitable properties have
to be postulated in the ansatz in eqs. (10) and (11), and their
violation may lead to systematical errors which cannot be
analyzed via MC error-bars. It has been known>*!" for
considerable time that there are effects of the test wave
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Fig. 12. Ground state energy for the 4 x4 systems at U =4 with
N; = N, =5 from Monte Carlo runs ignoring the sign (x) and taking the
sign into account (C gray) for the same configurations with different values
of 7 for 6 = 4 by Chambersys. Dimerized trial state (upper) and plane waves
(lower) are used as initial trial wave functions. To the value for the exact
energy (#), a dotted line is added to guide the eye.

function: Such effects of the wave function are again an
argument against the “reality” of the minus-sign: As the
results of the PQMC should be independent of |T) for
“reasonable” test wave functions, a quantity like the sign
which varies strongly with |7) has no place in a controllable
numerical approximation, and variations due to the test wave
functions are systematic errors. For a given ST-decomposi-
tion, different averages in the sign then becomes a mere
correlation between HS configurations and the respective
test wave function. The test wave function is not a physical
quantity anyway, as the result should be independent of it, so
correlations from it are not physically meaningful, either.

41 Ny=N, =5withU =4

In Fig. 12, we plotted the ground state energy by
Chambersys for different values of the Trotter stepsizes t
with dimerized and plane waves as trial wave functions to
show that the convergence to the same energy value is
obtained. Our results for both ignoring the sign and taking
the sign into account agree with other references.*®

4.2 NT=N¢=5Wl'l‘h U=38

In Figs. 13 and 14, we show the energy convergence of
our ground state energy computed with and without the sign
along the MC sweeps by Suzuki-Trotter, and Chambersgs
for dimerized and plane waves, respectively. For both
methods, the values computed with sign are closer to the
exact value whereas their fluctuations are much influenced
by the different trial wave functions which is in contrast to
the values computed without sign.

43 Ny=N, =TwithU =4

In Figs. 15 and 16, we show the energy convergence of our
ground state energy computed with and without the sign
along the MC sweeps by Suzuki—Trotter, and Chambersya
for dimerized and plane waves, respectively. In contrast to
the closed shell system, for an open shell system, the values
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Fig. 13. Ground state energy for the 4 x4 systems at U =38 with
Ny = Ny =5 from Monte Carlo runs ignoring the sign (x) and taking the
sign into account (O gray) for the same configurations in v = 1/16 with
0 = 8 by Suzuki-Trotter, computed from dimerized trial wave functions
(upper) and plane waves (lower). To the value for the exact energy (#),
a dotted line is added to guide the eye.

Dimerized trial wave

Fig. 15. Ground state energy for the 4 x4 systems at U =4 with
Ny = Ny, =7 from Monte Carlo runs ignoring the sign (x) and taking the
sign into account (C gray) for the same configurations in v = 1/16 with
0 = 4 by Suzuki-Trotter, computed from dimerized trial wave functions
(upper) and plane waves (lower). To the value for the exact energy (@),
a dotted line is added to guide the eye.

Dimerized trial wave
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Fig. 14. Ground state energy for the 4 x 4 systems at U =8 with
N; = N, =5 from Monte Carlo runs ignoring the sign (x) and taking the
sign into account (C gray) for the same configurations in 7 = 1/16 with
0 =8 by Chamberssy computed from dimerized trial wave functions
(upper) and plane waves (lower). To the value for the exact energy (#),
a dotted line is added to guide the eye.

computed without sign by both methods with different trial
wave functions are closer to the exact value while the values
computed with sign are distant from the exact value and again
have large fluctuations. As shown in Fig. 17, the average sign
is much influenced by the initial trial wave functions where
the dimerized trial wave function has benign average signs
than those from plane waves for both methods.

44 Ny=N, =T7withU =38

That in §4.1 and §4.3 the data with U = 4 are closer to the
values with exact diagonalization for sampling without sign,
and in §4.2 the data with U = 8 are closer for sampling with
sign should not create the impression that sampling with sign

104002-11

Fig. 16. Ground state energy for the 4 x4 systems at U =4 with
Ny = Ny, =7 from Monte Carlo runs ignoring the sign (x) and taking the
sign into account (C gray) for the same configurations in v = 1/16 with
0 =4 by Chambersys computed from dimerized trial wave functions
(upper) and plane waves (lower). To the value for the exact energy (),
a dotted line is added to guide the eye.

is beneficial for strong interaction. For an open shell system
with Ny = N, =7 at U = 8, the results with ignoring the
sign are closer, see Fig. 18. With the given wave functions,
it depends on the physical parameters whether sampling with
or without sign gives results closer to exact diagonalization.

4.5 Alternative trial wave functions

We have made comparisons with other trial wave
functions (eigenvectors to the largest eigenvalues of the
exponential of the matrix of the kinetic energy K, as well as
antiferromagnetic states) for selected parameters. The results
were within the limits of the dimerized and plane waves
shown here.
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Fig. 17. Average sign for the 4 x 4 systems at U = 4 with Ny = N, =7
from Monte Carlo runs for the same configurations in t = 1/16 with 6 = 4
by Suzuki-Trotter, (upper) and Chamberssn (lower) computed from
dimerized trial wave functions (O) and plane waves (C).
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Fig. 18. Ground state energy for the 4 x4 systems at U =38 with
Ny =N, =7 from Monte Carlo runs ignoring the sign (black line) and
taking the sign into account (gray dashed line) for the same configurations
with different values of 7 for 8 = 8 by Chambersya (CJ). To the value for the
exact energy (#), a dotted line is added to guide the eye.

5. Relation with Other Methods

5.1 Path integral methods

In the field of path integral methods, what we call first
order ST-decomposition is called*” the “primitive approx-
imation”, introduced before Quantum Monte Carlo methods
were thought of, see e.g., eq. (2-34) p. 38 in Feynman.’”
The error analysis for the approximated Hamiltonian in
eqgs. (16) and (17) is valid for these cases. The field of path
integral methods lacks the self-confidence of the QMC
community, and, for the evaluation of observables talks
bashfully only about “estimators”**>!? for the energy, etc.
From eq. (16), one can deduce that this terminology spread
because more often than not, the first order approximation to
the partition function left a lot to be desired for the actual
accuracy for which energies were evaluated when alternative
methods were available for comparison.

104002-12

5.2 Langevin dynamics

Our simulation has been performed exclusively with the
PQMC-scheme with heat-bath dynamics. Nevertheless, one
of the authors (H.-G. M) played around with heat-bath
sampling modified by orders of magnitude of multiplicative
noise, up to 5 to 8 decades, which is not so large, taking into
account the magnitude of the fermion determinant. The
results for the ground state energy did not change, after all,
the noise was ergodic. Therefore, we think that our result
may be also valid for simulations performed with Langevin
dynamics.>?

5.3 World-line QMC

Originally, the minus-sign sampling was introduced
ad hoc for world-line simulation.” Many misleading
conclusions about the DQMC come from indiscriminate
adoptions of ideas and results in the world-line QMC¥
method (WLQMC), especially in two™ and higher
dimensions. The world-line algorithm is in principle a
path integral method for lattices. Unfortunately, this incurs
negative transition probabilities when fermions change
their place, the mother of all minus-sign problems. A
recent analysis®® talks about “the” fundamental limitations
to QMC simulations in general, without discriminating
between world-line and determinant (auxiliary field)
methods. First of all, WLQMC will in general be applied
with first order ST-decompositions, else there would be a
tremendous blow-up of the necessary number of ST-slices
if disconnected-bond decompositions have to be performed
in higher order. In that case, WLQMC suffers from the
zero order accuracy of the approximated Hamiltonian in
eq. (16) when observables are computed. While the
fermion amplitudes can be constrained to physical densities
between 0 and 1, the world-line approach has a more
severe glitch even for ST-decompositions of higher order:
The decoupling is done via the closure relation so that a
complete sets of orthogonal single-particle-states is be-
tween the ST-slices to decouple the interaction. This gives
access to world-lines of individual particles in contradiction
to the fundamentals of fermion statistics as a theory for
indistinguishable particles, and therefore such an approach
should give errors beyond those of the decomposition. Only
if several world-lines become connected in ST-time, the
respective particles become indistinguishable again. That
can probably not be realized with a ground state algorithm,
as periodic boundary conditions in ST-time would be
necessary, which necessitate finite temperature simulations.
In DQMC, only one Green’s function is accessible for the
computation of observables, so there is no possibility to
discriminate between individual electrons. We cannot
exclude that for the world-line approach, the minus-sign
weighing may have merits, though there are no bounds on
an error which is due to the introduction of discriminable
particles. Nevertheless, on the computational side, another
problem of WLQMC is that it is far from clear how world-
lines must be moved so that the configuration space is
sampled evenly. The minus-sign problem there might as
well be related to ergodicity problems, which is suggested
by the impact different updating strategies’’ have on the
magnitude of the sign.
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5.4  “Interpolation”

World-line and DQMC algorithms are substantially
different. Though Hirsch*? proposed something what he
chose to call an “interpolation” between QMC methods, it is
only a coupling of the same system simulated with two
different methods. The coupling of two models via a
statistical weight does not prove any equivalence or relation
between the two models. Neither can there be any
conclusions be drawn about relation or equivalence from a
coupling between different methods for the same system.
The sign for the world-line approach has nothing to do with
the sign in the DQMC, as can be seen just by counting the
degrees of freedom: In the determinant approach, their
number depends on the number of HS spins per site, while in
the world-line approach they depend on the number of
particles in the system.

5.5 Grand-canonical simulations at finite temperature

Many results and conclusions in this article on PQMC are
also relevant for its finite temperature equivalent, the grand-
canonical quantum Monte Carlo? (GQMCQ). First of all,
there is also a fermion determinant, only its rank is equal to
the number of sites, not to the number of electrons. The
unphysical densities there have been noted earlier. In our
experience,’® the energies for low temperature GQMC
match those for PQMC quite well, even with the tendency,
though not the magnitude of the sign. Nevertheless, for the
GQMC there is no effect of a test wave function. In the
future, we will experiment with higher order ST-decom-
positions also with GQMC.

6. Conclusions

All things being equal, asymmetric ST-decompositions
show smaller signs than symmetric decompositions, nega-
tive fermion determinants can therefore be attributed to the
loss of symmetry in the product matrix of itself symmetric
matrices. All things being equal, higher order ST-decom-
positions with large negative substeps give lower signs than
those with smaller negative substeps, an issue which affects
the convergence. Accordingly, the pseudo-symplectic de-
compositions without negative ST-substeps perform rather
well, in the face of the fact that they are derived under
additional assumptions.

The energies computed without sign are higher than with
sign, exactly the opposite of what has been claimed in
ref. 59: We find consistently smaller energies when we take
the sign into account. Whenever we could control the
parameters, deviations between the averages computed with
and without sign were due to unphysical elements in
the simulation, like asymmetric decompositions (§2.4) or
unphysical electron densities (§3.3). Averages sampled
without sign may be higher or lower than the exact values,
and correspondingly the inclusion of the sign gives some-
times better, sometimes worse averages. The assertion in
ref. 59: “It should be emphasized that the neglect of the sign
of the fermion determinant is an uncontrolled approxima-
tion, and can lead to misleading results if the correction
terms are not included”. For the occurrence of negative
configurations, unphysical fermion densities outside [0, 1]
are necessary. Therefore the unphysical approximation is the
one which takes the sign due to such unphysical densities
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into account. The post-processing using the sign only
enhances the fluctuations in the data to an extent that the
distributions become non-Gaussian. We have at least as
small, if not smaller errors than other publications: For the
closed shell system, for methods with benign sign, sampling
with and without sign was consistent. For open shell
systems, sampling without sign was more accurate.

From the error compensation of the sampling with sign
(numerical errors, due to lack or malfunction of numerical
stabilizations or due to dysfunctional matrix inversions,
error bounds in the approximated Hamiltonian or unphysical
densities) works only if the error and the change in sign
affects one of the two spin direction, and then only
statistically. Unphysical densities are a problem which
cannot be eliminated by better stabilizations, inversions or
the use of quadruple precision: It will have to be seen in the
future whether it is sufficient to use higher order methods,
after all, in fluid dynamics, the use of 6th order CIP-methods
(Constrained Interpolated Profile) is common. Nevertheless,
it has to be seen whether alternatives to the conventionally
used HS-transformation have to be found or maybe even
“constrained ST-decomposition” should be derived which
are able to fix the electron densities (and hopefully, all other
entries in the Green’s function) within the limits given by
fermion statistics. Regarding how much the trial wave
functions are responsible for the unphysical densities,
comparisons with the finite temperature algorithm will have
to be seen. Deviations between ground state energies
sampled with different trial wave functions can be larger
than the MC error-bars.

For any system, classical, fermionic or bosonic, the
approximation of the Hamiltonian via ST-decompositions is
one order lower than for its exponential. Our results in
Table II show that this theorem is not just a pessimistic
estimate, but there is indeed a lack of convergence for the
ground state energy of the first order ST-decomposition for
the ST-stepsize approaching zero: First order ST-approx-
imations are therefore zero order computations of the
observables and not controlled approximations. Many
“results” and “methods” have been derived as path integral
formulas via the “primitive approximation”*” or via the
“Baker—Hausdorff formula”® which are equivalent to
Suzuki-Trotter;, so that the accuracy of the results for the
corresponding Lagrangian or Hamiltonian hinges on the
actual disappearance of the commutator of the constituents
which the authors could not deal with in the first place. It is
rather mind-boggling to imagine the Sisyphean task which
lies ahead of physics to figure out which results obtained
since the inception of the path integral method®” are correct,
which are amendable and which are just irrelevant.

The requirement for the Markov probability of the Monte
Carlo process is that the detailed balance is fulfilled, beyond
that, the computation of the average is reduced to a simple
average of the obtained observables. In this sense, a
Metropolis weight or a heat-bath weight can be used, there
is no need to manipulate the variables afterwards: Nobody
would decorate the observables in conventional Monte Carlo
with additional factors (quotient between the heat-bath and
Metropolis weight or vice versa): The guarantee of the
detailed balance guarantees the correctness of the Monte
Carlo sampling. Though the formula for the sampling in
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Table A:I. Coefficients for higher order ST-decompositions.

Method Order p Substeps Mgp Vn Ny
Suzuki-Trotter;, 2 1 1 1.0 1.0
McLachlan, %39 2 2 1-1/V2 1/32

1//2 1-1/42
Suzuki—Trotter, "% 2 2 0.5 1.0
0.5 0.0
McLachlan;®9 AS 3 3 Y =1 n, = 0.9196615230173999
Yao=1> n, =1/4ny) —n,/2
V3=1m m=l—-n-n
Ruth;% AS 3 3 7/24 2/3
3/4 -2/3
—1/24 1.0
Blanes & Moany*? 4 7 0.0829844064174052 0.2452989571842710
0.396309801498368 0.6048726657110800
—0.0390563049223486 1/2 —(ny + 1)
1 =2y +v2+v3) 3
V3 Ub]
V2 m
Y1 0.0
Calvo & Sanz-Sernay’” AS 4 5 0.06175885813562632 0.2051776615422864
0.3389780265536433 0.4030212816042146
0.6147913071755776 —0.1209208763389141
—0.1405480146593734 0.5127219331924131
0.1250198227945261 0.0
Candy & Rozmusy,”" 4 4 2+213 +27113)/6 1/(2 —21/3)
Forest & Ruth,’? (1 =23 _-2-13)/6 1/(1 —2%/3)
V2 m
Y1 0.0
Chambersyz 212 4 3 (1—1//3))2 1/2
1/V/3 1/2
4 0.0
Chambers,p>' "> 4 3 0.0 1/6
1/2 2/3
1/2 M
McLachlan %9 AS 4 4 0.1344961992774311 0.5153528374311229
—0.2248198030794208 —0.08578201941297364
0.7563200005156683 0.4415830236164665
0.3340036032863214 0.1288461583653842
Suzuki fractal,*®"3™ 4 6 0.2072453858971879 0.4144907717943757
0.4144907717943757 0.4144907717943757
—0.1217361576915636 —0.6579630871775028
V3 Up)
Y2 m
Y1 0.0

fermionic QMC procedures is always written with the
allegedly signed (positive and negative) probabilities as in
eq. (18), the probabilities actually used to generate the
Markov chain always use absolute values of the fermion
determinants. Anything else makes no sense, as there is
no mathematical theory of mixed negative and positive
probabilities, or a theory of Markov processes with negative
probabilities. An introduction of a weight for the sampling
which is different from the weight which generates the
probability distribution is unique to the field of Quantum
Monte Carlo, and has no mathematical justification from

104002-14

Continued on next page.

Monte Carlo theory, on the contrary: Due to the exceptional
treatment of using different probabilities for the generation
of the Markov chain (absolute value of the fermion
determinant) and the observable computation (determinant
with sign), the probability distributions can deviate from the
Gaussian shape, in contradiction to the law of large number
itself. Originally, the introduction of the sign in the sampling
for world-lines was ad hoc, the multi-particles states were
claimed to be bosonic, and the sign was allegedly used
to recover the “fermionic character”. Mathematically, the
multi-particle states in the world-line formalism are not
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Continued.
Method Order p Substeps Mg Vn n,
McLachlans®> AS 5 6 0.1193900292875673 0.3398396258391100
0.6989273703824752 —0.08860133690302732
—0.1713123582716008 0.5858564768259621
0.4012695022513534 —0.6030393565364919
0.01070508184823598 0.3235807965546976
0.05897962549803117 0.4423637942197495
Tselioss™> AS 5 7 0.4515650720436606 1.904232780508446
—0.002625517726040550 —1.939586366441925
—0.2887462490910128 0.3960766510231830
0.4703720043422902 0.5133868104090695
0.3704466763359328 —2.967739460604547
0.1934796732533846 0.004177409528669316
—0.1944916591582146 3.089452175577104
Blanes & Moangy*” 6 15 0.0 0.03785931984061160
0.09171915262446165 0.1026356331024350
0.1839831700050060 —0.02586788826655870
—0.05653436583288827 0.3142414030714470
0.004914688774712854 —0.1301444595174150
0.1437611271683580 0.1064177003695430
0.3285676937468040 —0.008794243128510581
—0.1964114664864542 0.2073050690568954
Vs M7
14 e
Y6 UE]
Vs N4
Va 13
V3 b3
V2 M
Blanes & Moangg*” 6 12 0.04146499851826240 0.1232297759462710
0.1981286719180670 0.2905537977995580
—0.04000619210415330 —0.1270492126254170
0.07525398430158070 —0.2463317610620750
—0.01151138742068790 0.3572088727959280
0.2366699247869311 0.2047770542914701
Y6 U]
Vs N4
Ya M3
V3 2
V2 m
Vi 0.0

quantum states at all as different particles have different
world-lines which can be discriminated in violation of the
basic tenets of quantum mechanics and quantum statistics.
Therefore, the whole argument for the introduction of the
sign is invalid. It is the actual (positive) probability used in
the Markov chain which determines the sampling, which
also guarantees that the observables are Gaussian distributed
if the detailed balance is fulfilled. Therefore, using a sign in
eq. (18) “with hindsight” for a state which was generated
independent of this sign is a misrepresentation of the Monte
Carlo sampling process.

A different question is why the use of the absolute value
of the determinant can generate the Markov chain at all.
From the point of approximation via the ST-decomposition,
it is clear that the sign of the determinant depends on the

104002-15

Continued on next page.

sign of all of the singular values in (®|W¥). Many of them are
considerably smaller than the error which is in the Suzuki—
Trotter decomposition itself: Letting a quantity used in
sampling depend on something which is smaller than the
noise in the sampling procedure makes no sense. Another
argument concerns the trial wave function. The results in the
filtering process should be independent of the trial wave
function |T), and in particular, of the phases of the single
particle waves ¢; it is composed of. If we change one of ¢; to
—@;, the sign of the determinant will be reversed, while the
Green’s function is invariant under this change: In the
computation of eq. (15), the phase turns up twice, once in
inverted part, once in the linear part, and both phase changes
cancel. This independence is according to the principles of
quantum mechanics. For the computation of the Markov

©?2012 The Physical Society of Japan



Person-to-person distribution by the author only. Not permitted for publication for institutional repositories or on personal Web sites.

—

. Phys. Soc. Jpn. 81 (2012) 104002

FuLL PAPERS

X. WanG and H.-G. MatutTis

Continued.
Method Order p Substeps My Vn n,
Chambersga 22> 6 4 (1 -=3//15)/2 5/18
3/(2V15) 4/9
Va2 m
Y1 0.0
Chambersgg>>>> 6 4 0.0 1/12
1 —=1//5)/2 5/12
1/ NG 5]
V2 m
Yoshidag, %" 6 8 0.3922568052387786 0.7845136104775573
0.5100434119184577 0.2355732133593581
—0.4710533854097564 —1.177679984178871
0.06875316825252009 1.315186320683911
V4 N3
V3 U3
V2 m
Y1 0.0
Laskar & Robutelgs>® 8 5 0.06943184420297371 0.1739274225687269
0.2605776340045981 0.3260725774312730
0.3399810435848563 r]2
V2 m
Y1 0.0
Yoshidagp’®"” 8 16 0.4574221231148958 0.9148442462297915
0.5842687913980015 0.2536933365662113
—0.5955794501471969 —1.444852236860605
—0.8015464361143276 —0.1582406353680502
0.8899492511272379 1.938139137622526
—0.01123554767639245 —1.960610232975311
—0.9289051917917571 0.1027998493917964
0.9056264600895391 1.708453070787282
Vs 7
14 M6
Ve Ns
Vs N4
V4 n3
V3 U3
V2 m
Y1 0.0

chain, the use of the absolute value again eliminates the
phase. Only the sampling with sign will take into account
such an artificial sign explicitly. We are therefore currently
looking for systems where the sampling with sign leads to
macroscopic deviations from the true values, in contrast to
the diminutive differences we found in §4 which are smaller
than the deviations obtained with different test wave
functions.
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Appendix:

Coefficients for Higher Order ST-

Decompositions

We show the coefficients y, and 7, for the various higher
order ST-decompositions in Table A-I in alphabetical
order. Yoshidaga, of which the closed form is given by
Koseleff,*!?) is known as the best among the three possible
solutions.®® Yoshidagp is the optimal solution among the
five possible solutions.®” Note that the symmetric higher
order ST-decompositions indicate y, = vy, , 11—, and n, =
MM g—n with MMy, = 0or NMn = NMMyp+1-n and Yn = VMuw+2-n
with y; = 0. Antisymmetric decompositions are indicated
by AS.
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