
International Journal of Modern Physics C,!c World Scientific Publishing Company

QUANTUM-STATISTICAL SIMULATIONS
FOR QUANTUM CIRCUITS

KURT FISCHER†, HANS-GEORG MATUTTIS∗,
NOBUYASU ITO∗, MASAMICHI ISHIKAWA†

∗Department of Applied Physics, School of Engineering,
The University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

†Mitsubishi Research Institute, Frontier Science Institute,
Otemachi 2-3-6, Chiyoda-Ku , Tokyo 100-8141, Japan

Received (received date)
Revised (revised date)

Keywords: Quantum information, quantum communication, auxiliary field method

Abstract
Using a Hubbard-Stratonovic like decomposition technique, we implemented

simulations for the quantum circuits of Simon’s algorithm for the detection of
the periodicity of a function and Shor’s algorithm for the factoring of prime
numbers on a classical computer. Our approach has the advantage that the
dimension of the problem does not grow exponentially with the number of
qubits.

1. Introduction

1.1. Quantum versus classical computation

Feynman1 suggested that because the Hilbert space of a L-particle quantum
system increases exponentially with L, a classical computer would need resources
growing exponentially in L, in order to simulate such a system. For quantum com-
puters ”trace out” all possible paths from the initial to the final state in Hilbert
space while classical computers allow only for one path at a time. This is called
sometime ”massive parallelism” of the quantum circuit. If a quantum algorithm is
used to compute a arithmetic function, for example, then the function (or its repre-
sentation as operator in Hilbert space) can act on all input values simultaneously;
but we can read out (= measure) only one value at a time; in addition, we cannot
chose the output value. However, any interacting system can be mapped onto a
noninteracting system by introducing some additional classical auxiliary variables2.
Thus we can in principle simulate with arbitrary accuracy any observable with the
help of the probabilistic Monte Carlo method, but have no proof that such an al-
gorithm may converge fast enough in order to speed up the calculation sufficiently.
It remains unclear up to the present whether a quantum computer is in principle
faster then a classical probabilistic computer. Hence a numerical experiment has to
decide. In this paper, our goal is to simulate Shor’s algorithm with a Monte Carlo
method.

1

1.2. The logical gates and their representation in Hilbert space

Every quantum bit 〈x|, with x = 0, 1 is represented by a two dimensional vec-
tor [1 − x x]. In this notation, the NOT operation is represented as 〈x| #−→

〈x|
(

0 1
1 0

)
. For the product state of two quantum spins, the controlled not

(CNOT) gate (symbol in Fig. 1) flips the second bit in the product state if and
only if the first bit is one. We can represent this as

CNOT = H2 (1 − 2n1n2)H2. (0.1)

The Hadamard gate H2 acts on the second bit and the number operator ni the i−th
bit,

Hi =
1√
2

(
1 1
1 −1

)
, ni =

(
0 0
0 1 S

)
. (0.2)

<x| <y|HH
<x|<x|

<y|

Figure 1: The CNOT-gate: The bullets at the vertices represent the number oper-
ator.

The number of gates necessary for representing a given quantum circuit can
be reduced by the following consideration3: A basic theorem of computer science
states that every computation can be reduced to a computation using NAND and
the FAN-OUT gates only4. Both operations can be emulated in quantum circuits
using the Toffoli gate, i.e. a controlled-controlled-NOT gate, see Fig. 2. The Toffoli
gate is a three-qubit gate, and it flips the third bit if and only if the first two qubits
are both one. The Toffoli gate can then be represented as 5

CNOT = H3 (1 − 2n1n2n3)H3, (0.3)

with the Hadamard-operation H3 acting on the third qubit.

H H H H
<y|

<x|

<y|

<1|

<0| <y|

<1|<x|

<1| <1| <x| <y|

<y|<y|

Figure 2: Toffoli gate as NAND and FAN OUT gate

1.3. The discrete decomposition

Using the representation of the CNOT and the Toffoli gate, we can split the
gates into a sum of products of one-bit gates, where the sum can be performed by
Monte Carlo techniques. This method is commonly called auxiliary field technique
or Hubbard Stratonovich (HS) transformation in quantum Monte Carlo simulations.
In contrast to quantum Monte Carlo simulations, where importance sampling is used
on the system’s partition function, our decomposition leads onto a simple sampling
procedure.

2

A general consideration in setting up the HS-transformation is to to minimize
the space of Monte Carlo configurations. Therefore, we allow only one random
variable ν = 1, . . . , n per CNOT gate, which leads us to the decomposition

1 − 2n1n2 =
n∑

ν=1

pν (aν + bνn1) (cν + dνn2) , (0.4)

where a configuration ν is weighted with the probability pν . One possible decom-
position is the discrete, symmetric decomposition analogous to the one introduced
by Hirsch for Hubbard-type interactions2, which for our case looks like

1 − 2n1n2 =
1
2

(
1 −

√
2n1

)(
1 +

√
2n2

)
+

1
2

(
1 +

√
2n1

)(
1 −

√
2n2

)
. (0.5)

Here, the variables from Eq. (0.4) are p1 = p2 = 1
2 , a1 = a2 = c1 = c2 = 1,

b1 = d2 = −b2 = −d1 =
√

2. We have used this decomposition in6. In this paper,
we will here choose an asymmetric decomposition,

1 − 2n1n2 = (1 − n2) + n2 (1 − 2n1) , (0.6)

with p1 = p2 = 0.5, a1 = 0, b1 = 2, c1 = 1, d1 = −2 and a2 = 2, b2 = −2, c2 = 1,
d2 = 0. This decomposition is particularly suited for the Toffoli gate. In principle,
the Toffoli gate could be replaced with six CNOT gates and some one-bit gates,
which would result in 26 configurations per Toffoli gate. Only 22 configurations are
need if the decomposition for the CNOT gate in Eq. (0.6) is inserted twice, so that

1 − 2n1n2n3 = 1 − n3 + n3 (1 − 2n1n2) (0.7)

=
1
2

(2 − 2n3) +
1
4

(2 − 2n2) 2n3 +
1
4

(1 − 2n1) 4n2n3. (0.8)

Higher order controlled-NOT gates can decomposed recursively in the same way,

1 − 2n1n2 . . . nν = (1 − nν) + nν (1 − nν−1) + . . . + nνnν−1 . . . n2 (1 − 2n1) (0.9)

Hence, for multiply controlled NOT-gates, only real arithmetic is necessary. As
many quantum circuits of interest depend on the usage of the quantum Fourier
transform, which intrinsically uses complex phases, nevertheless some complex arith-
metic has to be performed.

1.4. The decomposition with the least variance

As can be seen from the existence of many free parameters in our Eq. (0.4),
we have a great freedom to choose the numerical values for the parameters of the
decomposition. For the sake of a minimum variance in the Monte Carlo sampling
process, one constraint is to minimize the variance of the probability distribution
of the amplitudes, that is, their moments. It turns out that the moments depend
on the structure of the logical circuit. However, each circuit consists of a product
of the logical gates. Therefore we now describe and assess the contribution to the
first and second moment Mk, k = 1, 2 resulting from the decomposition of a single
CNOT gate. This moments should fulfill Mk ≥ 1, so that they are a measure of
the spreading of the Monte Carlo sampling. In Eq. (0.4), the number operator can
assume the values n1,2 = 0, 1. For each of these four cases, we get the contribution
from one of the n possible decompositions as

αν = aνcν , βν = (aν + bν) cν , γν = aν (cν + dν) , or δν = (aν + bν) (cν + dν) .
(0.10)

3

The boundary conditions which result from inserting n1,2 = 0, 1 into Eq. (0.4) are

n∑

ν=1

pναν =
n∑

ν=1

pνβν =
n∑

ν=1

pνγν = 1,
n∑

ν=1

pνδν = −1, ανδν = βνγν . (0.11)

A natural measure for the moment is the aritmetic mean of the k−th powers of the
absolute values of the four possible contributions,

Mk =
1
4

n∑

ν=1

pν

(
|αν |k + |βν |k + |γν |k + |δν |k

)
. (0.12)

The triangle inequality
n∑

ν=1

pν |αν | ≥

∣∣∣∣∣

n∑

ν=1

pναν

∣∣∣∣∣ (0.13)

etc. yields
M1 ≥ 1. (0.14)

Hence M1 is a measure for how much the sampling will spread. We can see that the
asymmetric decomposition in Eq. (0.6) fulfills M1 = 1, so it is optimal with respect
to the minimization of the fluctuations in the Monte Carlo sampling process. For
the second moment M2, we will prove that

M2 ≥ 2. (0.15)

This can be seen as follows: Define the real-valued vector e with e2
ν = pν and eν

real, and the four vectors x,y, z,u with

xν = eναν , yν = eνβν , zν = eνγν and uν = eνδν . (0.16)

Hence the second moment is

M2 =
1
4
(
|x|2 + |y|2 + |z|2 + |y|2

)
. (0.17)

The boundary conditions from Eq. (0.11) together with
∑n

ν=1 pν = 1 read now as

e2 = ex = ey = ez = ez∗ = 1 and eu = eu∗ = −1 (0.18)

where z∗ is the complex conjugate of z . ¿From the boundary condition ανδν = βνγν
follows

xu = yz. (0.19)

We have now expressed all boundary conditions and the second moment itself in
terms of the four complex vectors x,y, z,u. We apply the Cauchy-Schwartz in-
equality using Eqs. (0.18), (0.19), so that

8 = |(x − u∗) e|2 + |(y + z∗) e|2 ≤ |(x − u∗)|2 e2 + |(y + z∗)|2 e2 = 4M2, (0.20)

i.e. M2 ≥ 2, what we wanted to show. Again, the decomposition from Eq. (0.6)
fulfills M2 = 2. It is straightforward (although tedious) to show that the decompo-
sition in Eq. (0.6) up to symmetries is the only one fulfilling M1 = 1 and M2 = 2,
and therefore it is the optimal decomposition.

4

1

2 q
 21exp(i n n)=

1

2
q

Figure 3: The controlled phase gate

1.5. The quantum Fourier transform

In the last section, we represented the elementary logical gates in terms of uni-
tary operators. Just as for classical logical circuits on integrated circuits, every
classical computable function can be implemented also on a quantum circuit. To
perform the quantum Fourier transform, we need another type of gate, the con-
trolled phase gate. We can write it as in Fig. 3.

The controlled phase gate in Fig. 3 is symmetric in the two qubits. It is a matter
of convention to define the controlled phase gate by assigning the φ to the second
qubit as in our case or to the first qubit. The quantum Fourier transform we can
now represent as a product of controlled phase gates with the Hadamard gate. Let
〈x| =

∏L−1
ν=0 〈xν | denote the product state representing the binary representation of

the L digit number x =
∑L−1

ν=0 xν2ν . Then its Fourier transformation is

〈x| #−→
2L−1∑

p=0

exp
(

2πi
2L

px

)
〈p| =

2L−1∑

p=0

exp

(
2πi
2L

p
L−1∑

ν=0

xν2ν

)
. (0.21)

This we can write as the product

〈x| #−→
L−1∏

ν=0

(
〈0| + 〈1| exp

(
2πi
2L

p2ν

))
. (0.22)

Now, because p =
∑L−1

w=0 pw2w, we have

〈x| #−→
L−1∏

ν=0

(
〈0| + 〈1|

L−1∏

w=0

exp
(

2πi
2L

pw2ν+w

))
. (0.23)

This means that we can implement the Fourier transformation using Hadamard
gates 〈0| #−→ (〈0| + 〈1|) /

√
2 and controlled phase gates for pairs of bits ν, w with

phases 2π2ν+w−L. In practice, the gates with exponentially small phases can be
neglected7, by performing an approximate Fourier transformation to the accuracy
of m bits, with just the controlled phase gates with L ≥ ν + w ≥ L − m. Here
the upper limit comes from the fact that for ν + w ≥ L, the absolute value of the
complex phase is unity and can be neglected.

2. Simon’s algorithm

2.1. The quantum circuit

We will first concentrate on a simplified version of Simon’s algorithm8,9, which
serves as preparatory work for the implementation of Shor’s algorithm10,11. Simon’s

5

algorithm can detect the period of a function operating in ZL
2 , i.e. the space of

numbers which can be represented with L binary digits. Simon’s algorithm uses
only bit wise addition, without carry, which can be implemented using only the
exclusive OR operation ”⊕”. In ZL

2 , every element fulfills x⊕x = 0. It is important
that the periodic function is known to be 2:1; then f with period r, assumes a value
y only twice, y = f(x) = f(x⊕ y).

For two L-bit numbers with bits pi, xi with scalar px = p1x1 +p2x2 + . . .+pLxL,
the Fourier transform is the Hadamard transformation

〈x| #−→ 1√
2

2L−1∑

p=0

〈p| (−1)px =
L∏

i=1

〈0|i + (−1)xi 〈1|i√
2

(0.24)

Simon’s algorithm in its quantum version as described above first creates the equally
weighted superposition of all states in the first register

〈0|⊗ 〈0| #−→ 1√
2L

2L−1∑

x=0

〈x|⊗ 〈0| (0.25)

Then we apply the function f

1√
2L

2L−1∑

x=0

〈x|⊗ 〈f(x)| (0.26)

After that, we perform a measurement, where we obtain y0 = f(x0) = f(x0 + r) for
some value x0, because f is 2:1. Next we apply the Fourier transform to the first
register,

2−L
∑

p

(
(−1)x0p + (−1)(x0+r)p

)
〈p| = 21−L

∑

p

(−1)x0p 1 + (−1)rp

2
〈p|. (0.27)

Then we measure first register, and obtain some value p0. The total transition
amplitude A depends on the value of the first and second register

A = 21−L(−1)x0p0
1 + (−1)rp0

2
δ, (0.28)

where δ is one if and only if the chosen value of y0 is a possible value of f , and
otherwise zero. The overall sign depends on the unknown x0, which is one of the
two values for x yielding f(x0) = y0. In a simulation we would be able to predict
the sign (−1)x0p0 only if we could efficiently invert the function f . Most important,
the procedure selects a value of the first register such that

rp0 ≡ 0 mod2. (0.29)

Now, sampling O(L) of such random values suffice to have with high probability
a matrix P of maximal rank L − 1, so we can then determine the period r of the
function, as the unique non-zero solution of

rP = 0. (0.30)

In the space ZL
2 there are no nontrivial multiples of a nonzero element, so that Eq.

(0.30) determines r. Observe further, that this quantum algorithm does not work

6

for a general function but we need a function which is 2 : 1, or more generally a
function which is 2m : 1 with a positive integer m.

2.2. The Monte Carlo simulation

Simon’s algorithm is relatively simple to implement, because
1. It’s arithmetic is real valued,
2. the Fourier transform is a one bit operation and
3. the arithmetic uses no carry bits.

2.2.1. Measurement simulation
The first problem is the measurement. We cannot measure, i.e. collapse the

wave function of the multi-particle problem and measure the partial amplitudes.
As we can only measure scalar products, we need a reasonable probability that we
get nonzero overlap matrix elements between the initial state and the final state. If
the simulation produces a zero scalar product, it could be that either second register
was not a possible value of the function, or it could be an ”odd” value p0 in the
first register such that

p0r ≡ 1 mod2. (0.31)
We cannot decide in advance the outcome of the measurement, because we have
to use the transition amplitude between the given initial and chosen final state, in
order to compute the Monte Carlo sum over the auxiliary field configurations. But
the 2:1 property helps us here: We know in advance that the probability to find
a nonzero value amplitude is 1:4, because in both registers just half of all possible
values will occur. Therefore we can just select an arbitrary final state and perform
4 independent Monte Carlo simulations with different initial configurations.

2.3. Sample functions

2.3.1. An elementary linear function
If we use a linear periodic function with period r,

f(x) ≡ f(x + r) ≡ f(x) + f(r) (0.32)

then it will be 2:1 if and only if it has rank L−1, because then there will be exactly
one nonzero r with f(r) = 0.

A first, we give a simple example of a function f1 using only CNOT gates, which
puts the first bit to zero and leaves all the other bits unchanged. This means that if
(x1, x1, . . . , xL) and (y1, y1, . . . , yL) denotes the first and second register, then the
unitary representation in Hilbert space of Eq. (0.26) yields

x1 #−→ x1 y1 #−→ y1 (0.33)
xi #−→ xi yi #−→ yi ⊕ xi, i = 2, . . . L, (0.34)

which can be realized using L − 1 CNOT gates only. The bits xi, yi, i ≥ 2 are
processed according to the diagram in Fig. 4.

In this simple example, a Monte Carlo simulation will yield exactly zero if the
”wrong” final state is chosen, because there is no mixing between the bits in the
initial state. Therefore our simulation will merely test if the nonzero amplitudes are
recovered correctly, if we simply ignore the first bit. Using the HS-transformation
(Eq. (0.5)) on the circuit given in Fig. 4 for the one-bit 2 × 2 transition matrices
for the i−th x−bit with value pi and an auxiliary variable τ ∈ {0, 1},

1
2
√

22
(1 0)

(
1 1
1 −1

)(
1 0
0 1 + (−1)τ

√
2

)(
1 1
1 −1

)(
1 − pi

pi

)
=

7

HH

H Hx i

yi

Figure 4: Basic operation for the i−th pair of bits of f1.

1 + (−1)p
i

(
1 + (−1)τ

√
2
)

4
(0.35)

and likewise for the y bit, with (−1)τ being replaced by −(−1)τ . This gives the
amplitude

A =
n∏

i=2

1
4

∑

τi

[
1 + (−1)p

i

(
1 + (−1)τi

√
2
)] [

1 + (−1)y
i

(
1 − (−1)τi

√
2
)]

(0.36)

The above expression we can simplify if we consider the cases pi = yi and pi -= yi
separately, and sum over the auxiliary variables. This reproduces Eq. (0.28)

2L−1A = (−1)
∑

i
zi (0.37)

where
zi =

{
1 if pi = yi = 1,
1 else. (0.38)

2.3.2. Linear function with many gates
To test the feasibility of a Monte Carlo simulation by numerical experiment, we

constructed a more complicated linear function

f2(x1, x2; x3, . . . , xm; xm+1, . . . , xL) =
(x1 + x2, x1 + x2; x1 + x3, . . . , x1 + xm; xm+1, . . . , xL) (0.39)

which corresponds to a stronger connected network. It has the period

r = (1, . . . , 1︸ ︷︷ ︸
m times

, 0, . . . , 0). (0.40)

The possible values for y = (y1, y2, . . .) = f2(x) are the ones which fulfill

y1 = y2 (0.41)

and hence f2(x0) = y can be inverted (choosing the first bit to be zero) as

x0 = (0, y1; y3, . . . , yL). (0.42)

The transition amplitude we can evaluate with Eq. (0.28) . The circuit consists of
serially connected CNOT gates, which we can represent as phase gates with phase
π like in Fig. 4. Internal Hadamard gates cancel. If we abbreviate

g(τ) = 1 − (−1)τ
√

2, (0.43)

8

the partial amplitudes are

A(p1) = 1 + (−1)p1g(−τ1)g(−τ3) · . . . · g(−τ2m−1)
A(y1) = 1 + (−1)y1g(τ1)g(τ2),
A(p2) = 1 + (−1)p2g(−τ2)g(−τ4),
A(y2) = 1 + (−1)y2g(τ3)g(τ4),
A(pi) = 1 + (−1)pig(−τ2i),
A(yi) = 1 + (−1)yig(τ2i−1)g(τ2i), i = 3, . . . , m,
A(pi) = 1 + (−1)pig(−τm+i),
A(yi) = 1 + (−1)yig(τm+i), i = m + 1, . . . , L.

(0.44)

The total transition amplitude is then given by their product

A = 21−L(−1)x0p0
1 + (−1)rp0

2
δ

L∏

i=1

1
4

∑

τi

A(pi)A(yi). (0.45)

2.3.3. Asymmetric decomposition
Quite generally, we need a certain non-commutativity in the quantum circuit in

order to obtain significant information about the total sum if we only use a Monte
Carlo summation. This we can see if we use for f1the asymmetric decomposition of
Eq. (0.6). If the first summand 1 − n2 corresponds to τi = 0 , then the amplitude
for the i−th bit is (1− pi)/2, and for the second summand pi(−1)yi/2. Hence for a
given p, there is only one combination of τi such that the product amplitude does
not vanish. This single combination fulfills again Eq. (0.37), because the factors
(−1)yi contributes only if pi = 1. In short, all contribution except one are zero, and
the Monte Carlo summation is inefficient, because the non-vanishing contribution
is found only with probability 21−L . The reason is that that circuit is not ”deep”
so that it could contain non-commuting gates.

3. The structure of the Shor algorithm
Let us consider the problem of factoring a large odd number N , which has the

two prime factors p and q,
N = pq, (0.46)

where we do not know neither p or q, but only N . We would like get either p
or q with high efficiency. If we choose a number 0 ≤ a < N at random, we can
efficiently evaluate their greatest common divisor gcd(a, N) ∈ {1, p, q} with Euclid’s
algorithm. If it is either p or q, we are done. Otherwise we will try to get the period
of the function

f : x #−→ ax ≡ ax+r modN (0.47)
i.e. the smallest non-zero integer r for which

ar ≡ 1 modN. (0.48)

Then a well-known result of number theory (e.g. Ref.14, theorem A4.13) tells us
that with probability of at least 75%, r is even, and that

gcd
(
ar/2 − 1, N

)
= p or q. (0.49)

It remains to find the period r. Because N and r are large, for a number with
e.g. 200 binary digits, by trial and error we would need of the order of 2200 ≈ 1060

9

attempts. Up to today, no efficient algorithm is known to solve this problem using
resources growing only polynomially in log(N) on a classical computer12, but Shor
succeeded in proposing a quantum algorithm which we will explain in the following
sections and outline how it can be implemented with our Monte Carlo procedure.

With a number of L binary digits, mν = 0, 1 the product state 〈m| =
∏L−1

ν=0 〈mν |
can be associated. As input state for Shor’s algorithm, an equal weight superposition
of all possible input states,

1√
2L

2L−1∑

x=0

〈x| =
L−1∏

ν=0

1√
2

(〈0| + 〈1|) (0.50)

How large L is depending on N we explain in the next section. In the next step,
we have to create a circuit for the modular exponentiation

〈x|⊗ 〈0| #−→ 〈x|⊗ 〈ax modN |. (0.51)

This logical logical network can also be used to compute f for the superposition in
Eq. (0.50) as well:

1√
2L

2L−1∑

x=0

〈x|⊗ 〈0| #−→ 1√
2L

2L−1∑

x=0

〈x|⊗ 〈ax modN |. (0.52)

Finally, we perform the Fourier transform from Eq. (0.22) , on the first L bits,

1√
2L

2L−1∑

x=0

〈x|⊗ 〈0| #−→ 1
2L

2L−1∑

x,p=0

〈p|⊗ 〈ax modN | exp〈(2πi
2L

px〉). (0.53)

3.1. Measurement

We measure the first register and obtain an observable value p. Using the peri-
odicity r we write x = qr + s with 0 ≤ s < r and 0 ≤ q < qr ≈ 2L/r such that the
above sum becomes

1
2L

2L−1∑

p=0

r−1∑

s=0

exp〈(2πi
2L

ps〉)〈p|⊗ 〈as modN |
qr−1∑

q=0

exp〈(2πi
2L

pr〉)q . (0.54)

The sum on the right is nearly zero, except when

pd ≈ d
2L

r
(0.55)

for some integer 0 ≤ d < r. This means that the probability of measuring one of
the 2L values of p is nearly zero except for one of the r values pd, for each of which
the probability is of order 1/r, so that the total probability of observing one of the
values pd is of the order one. The exact figure10 is near 1/2, so that the probability
of observing another value of p is of the order of 1/(2r2) .

10

3.2. Extracting the period of the function f

Eq. (0.55) allows to extract the period of f as follows: We find an L−bit
approximation to an unknown rational number d/r, from which we only know that
its denominator is less than N . However, it is well known from number theory13

that we can find the rational number with certainty and efficiently with the help of
the continued fractions, if 2L > N2 .

3.3. Measurement simulation: Choosing the final state

In a simulation, we cannot ”measure” in the sense that we cannot cause the
collapse of the wave function and determine the partial amplitudes. The quantum
computer selects by construction with high probability just one of the basis vectors
with nonzero, maximal overlap to the final state. However, we have to choose
the final state in advance and then to perform the Monte Carlo summation. We
have to make sure that nonzero amplitude arises, in order to get a non-vanishing
information from the Fourier transform. We cannot be sure whether a vanishing
result was due to one of the following causes:

1. One reason may be, that we did not pick a value for p in the first part of the
final state, with high amplitude as in Eq. (0.55). If we simply choose one
of the 2L values of p at random, we have an exponentially small probability
(of the order of 1/r) to get one of the values pd. This we can circumvent
as follows: We chose as final state successively the states (|0〉 + |1〉)t (|0〉)L−t.
As long as 2t < r, we will have a transition amplitude ∝ 2t/2/r, whereas
for the value t0 with 2t0 ≥ r > 2t0−1 we have the amplitude of the order of
2t0/2/

√
r ∼ O(1) after O(log N) attempts.

2. The second possibility is that we did not pick one of the values as mod N
in the second register. There are r values for as mod N , an we chose with
probability r/N one of them. The order of r/N is roughly one, so that if we
choose a at random, then with sufficient probability we pick a function value.

That means that when we repeat the Monte Carlo sampling with a final state
picked according to the procedure outlined above, will get the leading bit of r after
O(log N) attempts. Then we can repeat the procedure by fixing the second register
of the final state, and replace successively the linear superposition |0〉+ |1〉 by |0〉. If
the amplitude was negligible, the i−th bit must have been one, and if it was finite,
the i−th bit must be zero. Thus we can infer bit for bit the value of r.

3.4. Implementation of Shor’s algorithm for factoring 15

Vandersypen et al.14 have published a quantum circuit for which they succeeded
in factoring 15 experimentally (see Fig. 5). We have implemented this circuit using
our auxiliary field decomposition method and are also able to perform the factoring.

The function used is
f(x) = 7x mod15. (0.56)

The three upper bits denote the first register p = (p0, p1, p2), the four lower bits
denote the second register y = (y3, y2, y1, y0). We monitored the convergence of the
Monte Carlo procedure for different right vectors, namely in the binary representa-
tion

p(1) = 2 = (0, 1, 0), y(1) = 13 = (1, 1, 0, 1) (0.57)

p(2)
2 = 2 = (0, 1, 0), y(2) = 9 = (1, 0, 0, 1) (0.58)

p(3)
3 = 3 = (1, 1, 0), y(3) = 4 = (0, 1, 0, 0) (0.59)

11

|0>

|0>

|0>

|0>

|0>

|0>

|0>

H

H

H

H

90 H

45 90 H

Figure 5: Quantum circuit for factoring 15 after Vandersypen.

The function has period r = 4 and can assume the values 1, 7, 4, 13 as x increases
from 0, 1, 2, 3. The lower 4 bits represent a linear combination of one of the four
values 1, 7, 4, 13. It follows from Eq. (0.55) and L = 3 that the upper three bits p
are a linear combination of even integers. If we choose p and y a priori, evaluating
Eq. (0.54) gives the transition amplitudes (if they are non-zero)

A =
1
4
i

px
2 . (0.60)

The circuit consists of 6 CNOT and 2 Toffoli gates and 3 controlled phase gates,
which in our decomposition give 264223 = 8192 configurations. These can be easily
simulated.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

MC steps

co
nv

er
ge

nc
e

MC confergence config. 1
exact result for config. 1
MC confergence config. 2

Figure 6: Convergence for the Shor’s algorithm for different right vectors.

For p(1), y(1), the absolute value of the resulting amplitude is 0.25, and the
convergence is plotted in Fig. 6 as full line to the exact value (dotted line). For
p(2), y(2), the amplitude goes to 0, because the vector y(2) is not one of the function
values 1, 7, 4 = 72 mod15 or 13 = 73 mod15. The convergence to 0 is plotted as
broken line to 0, and is also very fast. For the third case p(2) is odd, and the

12

amplitude is zero. Because in this special case all HS-configurations yield a zero
result, we have not shown the convergence in the plot.

4. Conclusion
We outlined in this article a novel strategy to simulate quantum circuits. We

showed how we could map the quantum problem onto a classical one, which is
accessible for the Monte Carlo sampling method. We found that we have to resort
to simple sampling, because there is no obvious cost function. For the near future,
we think that our approach using computer simulation will be on a par or superior
to experimental implementations.

This work was partially supported by the programme ”Research and Develop-
ment on Quantum-Communication Technology” of the Ministry of Public Man-
agement, Home Affairs, Posts and Telecommunications of Japan and by the Inoue
Foundation, Japan.

References

1. R.P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).
2. J.E. Hirsch, Phys. Rev. B 28, 4059 (1983).
3. M. A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information,

Cambridge Univ. Press, Cambridge, United Kingdom (2000).
4. Nielsen/Chuang 1.4.1.
5. Nielsen/Chuang, Fig. 4.8, page 182.
6. H.-G. Matuttis, K. Fischer, N. Ito, M. Ishikawa, preceding paper.
7. D. Coppersmith, IBM research report RC 19642 (1994).
8. D. Simon, Proc. 35th Annual Symposium on Foundations of Computer Science, IEEE

Press, Los Alamitos, California (1994).
9. P.W. Shor, quant-ph/0005003.

10. P.W. Shor, Proc. 35th Annual Symposium on Foundations of Computer Science, IEEE
Press, Los Alamitos, California, 124 (1994).

11. P.W. Shor, SIAM J. Comp. 26, 1484 (1997).
12. A.K. Lenstra and H.W. Lenstra Jr. (Ed), The Development of the Number Field Sieve,

Springer-Verlag, New York (1993).
13. Nielsen/Chuang, Appendix 4.
14. L.M.K. Vandersypen, M. Steffen, G. Beyta, C. Yannoni, M. H. Sherwood, I. L. Chuang,

Nature 414, p.883 (2001)

13

