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1.1 Introduction

Instead of using classical bits which are 0 or 1, quantum computers make
use of ”quantum bits” which are similar to XY-Spins. The total information
described by N quantum bits is vector in the Kronecker product space

(
a1 b1

)⊗ (
a2 b2

)⊗ (
a3 b3

)⊗ . . .
(
aN bN

)
, with a2

i + b2
i = 1. (1.1)

The dimension is the same as the space spanned by the same number of
classical bits

a1a2a3 . . . an, ai ∈ {0, 1}, (1.2)

but the intention is to sample the problem via a quantum mechanical wave-
function ”quantum parallel”. To allow the representation of the gates of a
quantum circuit with quantum mechanical states, the minimum requirement
is that the circuit is reversible, so that the number of input states must be
the same as the number of output states. Examples for forbidden and allowed
states are given in Fig. 1.1. All the final output of the quantum computation
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Fig. 1.1. Forbidden (left and middle) and allowed (right) types of gates for quantum
computers.

must be must be representable in the sense of quantum mechanics. The differ-
ence between quantum computing and mere ”reversible computing” is that in
the quantum circuit a quantum mechanical wave function is propagated. The
aim is to realize the propagation of a quantum mechanical wave function in
such a way that the ”all the solutions” are obtained ”at once,” an idea which
usually referred to under as ”quantum parallelism”. Most of the quantum
parallel algorithms proposed so far seem only to work for algorithms which



2 Kurt Fischer, Hans-Georg Matuttis, Satoshi Yukawa, and Nobuyasu Ito

select from discrete alternatives, like Shor’s prime factoring [8] or Grover’s
database search [9], with the exception of a proposal for the computation of
densities of states [2].

A recent investigation [1]indicates that for systems for which existence
and functionality can be proven mathematically, the actual realization in
terms of physical terms may be rather more problematic than mere existence
proofs indicate. For certain straightforward implementations, this does not
allow the successful execution of the implemented quantum algorithms. Even
if the initial wave functions are optimized to be resistant to noise for certain
solutions of the algorithms, there are still remaining solution possibilities
which are not recovered without error even for systems of only a few quantum
bits. We therefore decided to circumvent the problem by simply simulating
the quantum circuit on the level of the functionality of the quantum gates,
without taking into account a physical realization of the circuit [5, 6].

1.2 Auxiliary Field approach to Quantum Computing

We simulate the quantum computer circuit using techniques from Quantum-
Monte-Carlo on a classical computer. We focus on the simulation of the
”pure” quantum gates because for physical circuits, already the ”identity-
operation” may be too noisy. We will also not comment on implementation
possibilities, e.g. spin chains, NMR-Processes, quantum-dots for the circuit
discussed. Our main interest whether we can simulate larger systems than
those accessible to experiments currently or in the near future. The other in-
terest is to find out whether we can simulate a quantum algorithm on a classi-
cal computer via Quantum-MC-type of algorithms with a CPU-time-scaling
comparable to the time-scaling of quantum computers. This seems at least
possible, because it is known that ”good” results for non-polynomial com-
plete problems can be obtained using Monte-Carlo methods in ”polynomial
time”, e.g. for optimization problems, for example via simulated annealing
type of algorithms. Moreover, quantum Monte Carlo methods which reduce
the dimensionality of the simulated problem have a long history in statistical
physics.

The Hadamard gate mixes the first and second component of a qbit by

multiplying them with the Hadamard matrix 1√
2

(
1 1

−1 1

)
. Other often used

gates are the controlled not (CNOT) and Toffoli gate, which are given in
Fig. 1.2. As can be seen, half of the possible cases the action of the CNOT-
gate is that of the identity operator, and the action of the Toffoli gate is that
of the identity operator for 75 % of the possible input patterns. This lets
us hope that an auxiliary field approach can be implemented effectively, in
contrast e.g. to the computation of partial sums for the full problem.

For the CNOT-gate which acts on two input qbits with a controlling bit
nx and a controlled bit ny, can be represented as
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Fig. 1.2. Symbols and truth tables for the CNOT-Gate (left) and the Toffoli gate
(right).

CNOT = Hy(1− 2nxny)Hy (1.3)

where the subscripts denote the bit on which these one-bit operators nx, ny,
each with components nx1, ny1 and ny1, ny2, act. H is the Hadamard matrix,
and the number operator n|s〉 = s|s〉 for s ∈ {0, 1}. A symmetric Hubbard-
Stratonovic-transformation can be written as

CNOT =
1
2

∑
σ=0,1

(
1− (−1)σ

√
2nx)

)
Hy

(
1 + (−1)σ

√
2ny)

)
Hy, (1.4)

where symmetric means that the contribution for σ = 0 and for σ = 1 are
of the same size. For fermions, the discrete Hubbard-Stratonovich [4] trans-
formation decouples the interacting Fermions to non-interacting Fermions
feeling fluctuating potentials. In case of the quantum gates, the controlled
NOT-gate is transformed to the action of a number of gates which are not
controlling each other any more. Analogies and differences for auxiliary field
simulations for fermionic systems and quantum gates are given in Ref. [5].
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Fig. 1.3. Cirquit using controlled phase gates for the QFT for four qbits, which

are CNOT-gates with an additional phase factor exp
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]
for q = 2, 4, 8.
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1.3 Simulations of the Quantum-Fourier-Transformation

Previously, we have performed simulations for the period-finding kind of al-
gorithm by Simon [5] and for the factoring of 15 [6] by Vandersypen [7]. Our
long term aim is to obtain a feasible implementation of the full Shor-algorithm
for integer factoring [8]. As one of the central functional in such a circuit is
the quantum Fourier Transformation (QFT), the quantum variant of the
Fast Fourier Transform, we investigated the Monte Carlo convergence for the
auxiliary field decoupled QFT. We simulated the QFT with the symmetric
HS-decomposition of Eq. 1.4 and with another, non-symmetric decomposi-
tion. Fig. 1.4 shows that for different decompositions, different distributions
of values must be sampled. The convergence results in Fig. 1.5 show that
the convergence for the symmetric decomposition is already significant for
less than 1/100 of the total number of configurations, whereas for the non-
symmetric decomposition, no convergence was observed even for MC-runs
using as much samples as the number of total configurations.
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Fig. 1.4. Histogram of contributions for the symmetric decomposition (left) and
for an asymmetric decomposition (right).

1.4 Conclusion

We have shown how the auxiliary field methods known from quantum Monte
Carlo techniques can be applied to quantum computing problems. The
Hubbard-Stratonovich transformation leads to a simple sampling procedure
in contrast to the importance sampling of quantum Monte Carlo.

The initial simulations show that for small problems, the method is ap-
plicable. For problems which are realistically large, e.g. integer factoring for
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numbers from hundreds of bits, the scaling of the necessary computer time
is currently under investigation.

This work was partially supported by the program ”Research and Devel-
opment on Quantum-Communication Technology” of the Ministry of Public
Management, Home Affairs, Posts and Telecommunications of Japan and by
the Inoue Foundation, Japan.
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Fig. 1.5. Sample run for 6 bits for the symmetric decomposition (left) and for an
assymetric decomposition (right) for a left input vector representing 11 and the
right input vector representing 25.
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